Gain Coefficients for Scrambled Halton Points

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Numerical Analysis Pub Date : 2024-05-02 DOI:10.1137/23m1601882
Art B. Owen, Zexin Pan
{"title":"Gain Coefficients for Scrambled Halton Points","authors":"Art B. Owen, Zexin Pan","doi":"10.1137/23m1601882","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 3, Page 1021-1038, June 2024. <br/>Abstract. Randomized quasi-Monte Carlo, via certain scramblings of digital nets, produces unbiased estimates of [math] with a variance that is [math] for any [math]. It also satisfies some nonasymptotic bounds where the variance is no larger than some [math] times the ordinary Monte Carlo variance. For scrambled Sobol’ points, this quantity [math] grows exponentially in [math]. For scrambled Faure points, [math] in any dimension, but those points are awkward to use for large [math]. This paper shows that certain scramblings of Halton sequences have gains below an explicit bound that is [math] but not [math] for any [math] as [math]. For [math], the upper bound on the gain coefficient is never larger than [math].","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"380 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1601882","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Numerical Analysis, Volume 62, Issue 3, Page 1021-1038, June 2024.
Abstract. Randomized quasi-Monte Carlo, via certain scramblings of digital nets, produces unbiased estimates of [math] with a variance that is [math] for any [math]. It also satisfies some nonasymptotic bounds where the variance is no larger than some [math] times the ordinary Monte Carlo variance. For scrambled Sobol’ points, this quantity [math] grows exponentially in [math]. For scrambled Faure points, [math] in any dimension, but those points are awkward to use for large [math]. This paper shows that certain scramblings of Halton sequences have gains below an explicit bound that is [math] but not [math] for any [math] as [math]. For [math], the upper bound on the gain coefficient is never larger than [math].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
哈尔顿干扰点的增益系数
SIAM 数值分析期刊》第 62 卷第 3 期第 1021-1038 页,2024 年 6 月。摘要。通过对数字网的某些扰乱,随机准蒙特卡洛产生对任意[数学]方差为[数学]的[数学]无偏估计。它还满足一些非渐进界限,即方差不大于普通蒙特卡罗方差的某个[数学]倍。对于乱序索博尔点,这个量[math]以[math]的指数形式增长。对于加扰的福尔点,[math] 在任何维度上都是如此,但这些点在用于大[math]时却很笨拙。本文表明,对于[数学]的任何[数学],哈顿序列的某些扰动的增益低于[数学]但不是[数学]的明确界限。对于 [math],增益系数的上限永远不会大于 [math]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
期刊最新文献
On the Existence of Minimizers in Shallow Residual ReLU Neural Network Optimization Landscapes A Domain Decomposition Method for Stochastic Evolution Equations New Time Domain Decomposition Methods for Parabolic Optimal Control Problems II: Neumann–Neumann Algorithms The Mean-Field Ensemble Kalman Filter: Near-Gaussian Setting The Lanczos Tau Framework for Time-Delay Systems: Padé Approximation and Collocation Revisited
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1