On the Existence of Minimizers in Shallow Residual ReLU Neural Network Optimization Landscapes

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Numerical Analysis Pub Date : 2024-11-26 DOI:10.1137/23m1556241
Steffen Dereich, Arnulf Jentzen, Sebastian Kassing
{"title":"On the Existence of Minimizers in Shallow Residual ReLU Neural Network Optimization Landscapes","authors":"Steffen Dereich, Arnulf Jentzen, Sebastian Kassing","doi":"10.1137/23m1556241","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2640-2666, December 2024. <br/> Abstract. In this article, we show the existence of minimizers in the loss landscape for residual artificial neural networks (ANNs) with a multidimensional input layer and one hidden layer with ReLU activation. Our work contrasts with earlier results in [D. Gallon, A. Jentzen, and F. Lindner, preprint, arXiv:2211.15641, 2022] and [P. Petersen, M. Raslan, and F. Voigtlaender, Found. Comput. Math., 21 (2021), pp. 375–444] which showed that in many situations minimizers do not exist for common smooth activation functions even in the case where the target functions are polynomials. The proof of the existence property makes use of a closure of the search space containing all functions generated by ANNs and additional discontinuous generalized responses. As we will show, the additional generalized responses in this larger space are suboptimal so that the minimum is attained in the original function class.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"182 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1556241","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2640-2666, December 2024.
Abstract. In this article, we show the existence of minimizers in the loss landscape for residual artificial neural networks (ANNs) with a multidimensional input layer and one hidden layer with ReLU activation. Our work contrasts with earlier results in [D. Gallon, A. Jentzen, and F. Lindner, preprint, arXiv:2211.15641, 2022] and [P. Petersen, M. Raslan, and F. Voigtlaender, Found. Comput. Math., 21 (2021), pp. 375–444] which showed that in many situations minimizers do not exist for common smooth activation functions even in the case where the target functions are polynomials. The proof of the existence property makes use of a closure of the search space containing all functions generated by ANNs and additional discontinuous generalized responses. As we will show, the additional generalized responses in this larger space are suboptimal so that the minimum is attained in the original function class.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
期刊最新文献
On the Existence of Minimizers in Shallow Residual ReLU Neural Network Optimization Landscapes A Domain Decomposition Method for Stochastic Evolution Equations New Time Domain Decomposition Methods for Parabolic Optimal Control Problems II: Neumann–Neumann Algorithms The Mean-Field Ensemble Kalman Filter: Near-Gaussian Setting The Lanczos Tau Framework for Time-Delay Systems: Padé Approximation and Collocation Revisited
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1