Qualitative and quantitative changes in phenology of chlorophyll a concentrations during the transition from eutrophy to oligotrophy

IF 5.1 2区 地球科学 Q1 LIMNOLOGY Limnology and Oceanography Letters Pub Date : 2024-05-03 DOI:10.1002/lol2.10403
Dietmar Straile, Karl-Otto Rothhaupt
{"title":"Qualitative and quantitative changes in phenology of chlorophyll a concentrations during the transition from eutrophy to oligotrophy","authors":"Dietmar Straile,&nbsp;Karl-Otto Rothhaupt","doi":"10.1002/lol2.10403","DOIUrl":null,"url":null,"abstract":"<p>The PEG (Plankton Ecology Group) model predicts differences in phenology between eutrophic and oligotrophic lakes regarding the occurrence, timing and magnitude of annual chlorophyll maxima and minima. While these predictions have been tested between lakes, hardly any tests exist using long-term data. We test these predictions using chlorophyll time-series (1980–2019) from Lake Constance in which trophic status shifted from eutrophic to oligotrophic conditions. We show that oligotrophication subsequently resulted in reduction of the summer and spring blooms, and finally the loss of the clear-water phase. In contrast to the PEG model the spring bloom was not delayed, but advanced with oligotrophication. Warming modified the seasonal patterns via advancing clear-water timing. Oligotrophication did not only influence phenologies, but also the importance of independent variables driving phenologies. Thus, the decline of nutrients was the dominant factor in shaping the seasonal patterns of chlorophyll in Lake Constance during the last four decades.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10403","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lol2.10403","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The PEG (Plankton Ecology Group) model predicts differences in phenology between eutrophic and oligotrophic lakes regarding the occurrence, timing and magnitude of annual chlorophyll maxima and minima. While these predictions have been tested between lakes, hardly any tests exist using long-term data. We test these predictions using chlorophyll time-series (1980–2019) from Lake Constance in which trophic status shifted from eutrophic to oligotrophic conditions. We show that oligotrophication subsequently resulted in reduction of the summer and spring blooms, and finally the loss of the clear-water phase. In contrast to the PEG model the spring bloom was not delayed, but advanced with oligotrophication. Warming modified the seasonal patterns via advancing clear-water timing. Oligotrophication did not only influence phenologies, but also the importance of independent variables driving phenologies. Thus, the decline of nutrients was the dominant factor in shaping the seasonal patterns of chlorophyll in Lake Constance during the last four decades.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
叶绿素 a 浓度在中营养向低营养过渡期间的物候学定性和定量变化
根据浮游生物生态学小组(PEG)模型的预测,富营养化湖泊和寡营养湖泊在年度叶绿素最大值和最小值的出现、时间和幅度方面存在物候差异。虽然这些预测已在湖泊之间进行过测试,但几乎没有使用长期数据进行过测试。我们利用康斯坦茨湖的叶绿素时间序列(1980-2019 年)检验了这些预测,该湖的营养状态从富营养化转变为低营养状态。我们发现,低营养化随后导致夏季和春季水花减少,并最终导致清水期消失。与 PEG 模型不同的是,春季水华并没有推迟,而是随着低营养化而提前。气候变暖使清水期提前,从而改变了季节模式。少营养化不仅影响物候,还影响驱动物候的独立变量的重要性。因此,在过去四十年中,营养物质的减少是影响博登湖叶绿素季节模式的主要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.00
自引率
3.80%
发文量
63
审稿时长
25 weeks
期刊介绍: Limnology and Oceanography Letters (LO-Letters) serves as a platform for communicating the latest innovative and trend-setting research in the aquatic sciences. Manuscripts submitted to LO-Letters are expected to present high-impact, cutting-edge results, discoveries, or conceptual developments across all areas of limnology and oceanography, including their integration. Selection criteria for manuscripts include their broad relevance to the field, strong empirical and conceptual foundations, succinct and elegant conclusions, and potential to advance knowledge in aquatic sciences.
期刊最新文献
Disentangling effects of droughts and heatwaves on alpine periphyton communities: A mesocosm experiment Snow removal cools a small dystrophic lake Unraveling Lake Geneva's hypoxia crisis in the Anthropocene Simple visualization of fish migration history based on high‐resolution otolith δ18O profiles and hydrodynamic models Arctic fishes reveal patterns in radiocarbon age across habitats and with recent climate change
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1