Efficient ECG classification based on the probabilistic Kullback-Leibler divergence

Dhiah Al-Shammary , Mohammed Radhi , Ali Hakem AlSaeedi , Ahmed M. Mahdi , Ayman Ibaida , Khandakar Ahmed
{"title":"Efficient ECG classification based on the probabilistic Kullback-Leibler divergence","authors":"Dhiah Al-Shammary ,&nbsp;Mohammed Radhi ,&nbsp;Ali Hakem AlSaeedi ,&nbsp;Ahmed M. Mahdi ,&nbsp;Ayman Ibaida ,&nbsp;Khandakar Ahmed","doi":"10.1016/j.imu.2024.101510","DOIUrl":null,"url":null,"abstract":"<div><p>Diagnostic systems of cardiac arrhythmias face early and accurate detection challenges due to the overlap of electrocardiogram (ECG) patterns. Additionally, these systems must manage a huge number of features. This paper proposes a new classifier Kullback-Leibler classifier (KLC) that combines feature optimization and probabilistic Kullback-Leibler (KL) divergence. Particle swarm optimization (PSO) is used for optimizing the features of ECG data, while KL divergence counts the variance between training and testing probability distributions. The proposed framework led the new classifier to distinguish normal and abnormal rhythms accurately. MIT-BIH Standard Arrhythmia Dataset (MIT-BIH) is used to test the validity of the proposed model. The experimental results show the proposed classifier achieves results in precision (86.67%), recall (86.67%), and F1_Score (86.5%).</p></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"47 ","pages":"Article 101510"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352914824000662/pdfft?md5=bd106f50aaf88b9f4241ed8fb538665e&pid=1-s2.0-S2352914824000662-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352914824000662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Diagnostic systems of cardiac arrhythmias face early and accurate detection challenges due to the overlap of electrocardiogram (ECG) patterns. Additionally, these systems must manage a huge number of features. This paper proposes a new classifier Kullback-Leibler classifier (KLC) that combines feature optimization and probabilistic Kullback-Leibler (KL) divergence. Particle swarm optimization (PSO) is used for optimizing the features of ECG data, while KL divergence counts the variance between training and testing probability distributions. The proposed framework led the new classifier to distinguish normal and abnormal rhythms accurately. MIT-BIH Standard Arrhythmia Dataset (MIT-BIH) is used to test the validity of the proposed model. The experimental results show the proposed classifier achieves results in precision (86.67%), recall (86.67%), and F1_Score (86.5%).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于概率库尔巴克-莱伯勒发散的高效心电图分类
由于心电图(ECG)模式的重叠,心律失常诊断系统面临着早期准确检测的挑战。此外,这些系统还必须管理大量特征。本文提出了一种新的分类器 Kullback-Leibler classifier (KLC),它结合了特征优化和概率 Kullback-Leibler (KL) 发散。粒子群优化(PSO)用于优化心电图数据的特征,而 KL 发散则计算训练和测试概率分布之间的方差。所提出的框架使新分类器能准确区分正常和异常节律。MIT-BIH 标准心律失常数据集(MIT-BIH)被用来测试所提模型的有效性。实验结果表明,提出的分类器在精确度(86.67%)、召回率(86.67%)和 F1_Score (86.5%)方面都取得了成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Informatics in Medicine Unlocked
Informatics in Medicine Unlocked Medicine-Health Informatics
CiteScore
9.50
自引率
0.00%
发文量
282
审稿时长
39 days
期刊介绍: Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.
期刊最新文献
Usability and accessibility in mHealth stroke apps: An empirical assessment Spatiotemporal chest wall movement analysis using depth sensor imaging for detecting respiratory asynchrony Regression and classification of Windkessel parameters from non-invasive cardiovascular quantities using a fully connected neural network Patient2Trial: From patient to participant in clinical trials using large language models Structural modification of Naproxen; physicochemical, spectral, medicinal, and pharmacological evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1