Surabhi Datta , Kyeryoung Lee , Liang-Chin Huang , Hunki Paek , Roger Gildersleeve , Jonathan Gold , Deepak Pillai , Jingqi Wang , Mitchell K. Higashi , Lizheng Shi , Percio S. Gulko , Hua Xu , Chunhua Weng , Xiaoyan Wang
{"title":"Patient2Trial: From patient to participant in clinical trials using large language models","authors":"Surabhi Datta , Kyeryoung Lee , Liang-Chin Huang , Hunki Paek , Roger Gildersleeve , Jonathan Gold , Deepak Pillai , Jingqi Wang , Mitchell K. Higashi , Lizheng Shi , Percio S. Gulko , Hua Xu , Chunhua Weng , Xiaoyan Wang","doi":"10.1016/j.imu.2025.101615","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>Large language models (LLMs) exhibit promising language understanding and generation capabilities and have been adopted for various clinical use cases. Investigating the feasibility of leveraging LLMs in building a clinical trial retrieval system for patients is crucial as it can greatly enhance the patient enrollment process by prioritizing the most suitable trials pertaining to a patient. In this work, we develop an LLM-assisted system focused on a patient-initiated approach, allowing patients with specific conditions to directly find eligible trials by completing disorder-specific questionnaires.</div></div><div><h3>Methods</h3><div>We obtained clinical trial eligibility criteria (from ClinicalTrials.gov) and simulated patient questionnaires (or topics) from the Text REtrieval Conference (TREC) 2023 Clinical Trials Track conducted by the National Institute of Standards and Technology (NIST), in which we also participated. These topics cover eight disorders across diverse domains, namely glaucoma, anxiety, chronic obstructive pulmonary disease, breast cancer, Covid-19, rheumatoid arthritis, sickle cell anemia, and type 2 diabetes. A Generative Pre-trained Transformer model (GPT-4) was employed for system development. We conducted both quantitative and qualitative evaluation using 37 patient topics.</div></div><div><h3>Results</h3><div>The system achieved an overall Precision@10 (proportion of relevant trials) of 0.7351 and NDCG@10 (considers ranking order of relevant trials) of 0.8109, indicating its effectiveness in retrieving ranked lists of suitable trials for patients. Notably, for eight out of 37 patient topics, all the top 10 retrieved trials were relevant. The system scored the highest on breast cancer (NDCG@10 = 0.9347, Precision@10 = 0.84) and the lowest on type 2 diabetes (NDCG@10 = 0.61, Precision@10 = 0.475). One probable reason could be that the information in breast cancer topics is relatively straightforward to match. Qualitative error analysis classified errors into four categories (e.g., difficulty in correctly matching inclusion criteria) and further highlighted strengths (e.g., ability to make clinical inference).</div></div><div><h3>Conclusion</h3><div>We demonstrated the feasibility of integrating LLMs in identifying and ranking suitable trials for patients across multiple disorders. Further work is required to assess the system's generalizability on other disorders and patient information sources. This system has the potential to expedite the patient-trial matching process by suggesting a ranked list of applicable trials to patients and clinicians.</div></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"53 ","pages":"Article 101615"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352914825000036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Large language models (LLMs) exhibit promising language understanding and generation capabilities and have been adopted for various clinical use cases. Investigating the feasibility of leveraging LLMs in building a clinical trial retrieval system for patients is crucial as it can greatly enhance the patient enrollment process by prioritizing the most suitable trials pertaining to a patient. In this work, we develop an LLM-assisted system focused on a patient-initiated approach, allowing patients with specific conditions to directly find eligible trials by completing disorder-specific questionnaires.
Methods
We obtained clinical trial eligibility criteria (from ClinicalTrials.gov) and simulated patient questionnaires (or topics) from the Text REtrieval Conference (TREC) 2023 Clinical Trials Track conducted by the National Institute of Standards and Technology (NIST), in which we also participated. These topics cover eight disorders across diverse domains, namely glaucoma, anxiety, chronic obstructive pulmonary disease, breast cancer, Covid-19, rheumatoid arthritis, sickle cell anemia, and type 2 diabetes. A Generative Pre-trained Transformer model (GPT-4) was employed for system development. We conducted both quantitative and qualitative evaluation using 37 patient topics.
Results
The system achieved an overall Precision@10 (proportion of relevant trials) of 0.7351 and NDCG@10 (considers ranking order of relevant trials) of 0.8109, indicating its effectiveness in retrieving ranked lists of suitable trials for patients. Notably, for eight out of 37 patient topics, all the top 10 retrieved trials were relevant. The system scored the highest on breast cancer (NDCG@10 = 0.9347, Precision@10 = 0.84) and the lowest on type 2 diabetes (NDCG@10 = 0.61, Precision@10 = 0.475). One probable reason could be that the information in breast cancer topics is relatively straightforward to match. Qualitative error analysis classified errors into four categories (e.g., difficulty in correctly matching inclusion criteria) and further highlighted strengths (e.g., ability to make clinical inference).
Conclusion
We demonstrated the feasibility of integrating LLMs in identifying and ranking suitable trials for patients across multiple disorders. Further work is required to assess the system's generalizability on other disorders and patient information sources. This system has the potential to expedite the patient-trial matching process by suggesting a ranked list of applicable trials to patients and clinicians.
期刊介绍:
Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.