Patient2Trial: From patient to participant in clinical trials using large language models

Surabhi Datta , Kyeryoung Lee , Liang-Chin Huang , Hunki Paek , Roger Gildersleeve , Jonathan Gold , Deepak Pillai , Jingqi Wang , Mitchell K. Higashi , Lizheng Shi , Percio S. Gulko , Hua Xu , Chunhua Weng , Xiaoyan Wang
{"title":"Patient2Trial: From patient to participant in clinical trials using large language models","authors":"Surabhi Datta ,&nbsp;Kyeryoung Lee ,&nbsp;Liang-Chin Huang ,&nbsp;Hunki Paek ,&nbsp;Roger Gildersleeve ,&nbsp;Jonathan Gold ,&nbsp;Deepak Pillai ,&nbsp;Jingqi Wang ,&nbsp;Mitchell K. Higashi ,&nbsp;Lizheng Shi ,&nbsp;Percio S. Gulko ,&nbsp;Hua Xu ,&nbsp;Chunhua Weng ,&nbsp;Xiaoyan Wang","doi":"10.1016/j.imu.2025.101615","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>Large language models (LLMs) exhibit promising language understanding and generation capabilities and have been adopted for various clinical use cases. Investigating the feasibility of leveraging LLMs in building a clinical trial retrieval system for patients is crucial as it can greatly enhance the patient enrollment process by prioritizing the most suitable trials pertaining to a patient. In this work, we develop an LLM-assisted system focused on a patient-initiated approach, allowing patients with specific conditions to directly find eligible trials by completing disorder-specific questionnaires.</div></div><div><h3>Methods</h3><div>We obtained clinical trial eligibility criteria (from ClinicalTrials.gov) and simulated patient questionnaires (or topics) from the Text REtrieval Conference (TREC) 2023 Clinical Trials Track conducted by the National Institute of Standards and Technology (NIST), in which we also participated. These topics cover eight disorders across diverse domains, namely glaucoma, anxiety, chronic obstructive pulmonary disease, breast cancer, Covid-19, rheumatoid arthritis, sickle cell anemia, and type 2 diabetes. A Generative Pre-trained Transformer model (GPT-4) was employed for system development. We conducted both quantitative and qualitative evaluation using 37 patient topics.</div></div><div><h3>Results</h3><div>The system achieved an overall Precision@10 (proportion of relevant trials) of 0.7351 and NDCG@10 (considers ranking order of relevant trials) of 0.8109, indicating its effectiveness in retrieving ranked lists of suitable trials for patients. Notably, for eight out of 37 patient topics, all the top 10 retrieved trials were relevant. The system scored the highest on breast cancer (NDCG@10 = 0.9347, Precision@10 = 0.84) and the lowest on type 2 diabetes (NDCG@10 = 0.61, Precision@10 = 0.475). One probable reason could be that the information in breast cancer topics is relatively straightforward to match. Qualitative error analysis classified errors into four categories (e.g., difficulty in correctly matching inclusion criteria) and further highlighted strengths (e.g., ability to make clinical inference).</div></div><div><h3>Conclusion</h3><div>We demonstrated the feasibility of integrating LLMs in identifying and ranking suitable trials for patients across multiple disorders. Further work is required to assess the system's generalizability on other disorders and patient information sources. This system has the potential to expedite the patient-trial matching process by suggesting a ranked list of applicable trials to patients and clinicians.</div></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"53 ","pages":"Article 101615"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352914825000036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

Large language models (LLMs) exhibit promising language understanding and generation capabilities and have been adopted for various clinical use cases. Investigating the feasibility of leveraging LLMs in building a clinical trial retrieval system for patients is crucial as it can greatly enhance the patient enrollment process by prioritizing the most suitable trials pertaining to a patient. In this work, we develop an LLM-assisted system focused on a patient-initiated approach, allowing patients with specific conditions to directly find eligible trials by completing disorder-specific questionnaires.

Methods

We obtained clinical trial eligibility criteria (from ClinicalTrials.gov) and simulated patient questionnaires (or topics) from the Text REtrieval Conference (TREC) 2023 Clinical Trials Track conducted by the National Institute of Standards and Technology (NIST), in which we also participated. These topics cover eight disorders across diverse domains, namely glaucoma, anxiety, chronic obstructive pulmonary disease, breast cancer, Covid-19, rheumatoid arthritis, sickle cell anemia, and type 2 diabetes. A Generative Pre-trained Transformer model (GPT-4) was employed for system development. We conducted both quantitative and qualitative evaluation using 37 patient topics.

Results

The system achieved an overall Precision@10 (proportion of relevant trials) of 0.7351 and NDCG@10 (considers ranking order of relevant trials) of 0.8109, indicating its effectiveness in retrieving ranked lists of suitable trials for patients. Notably, for eight out of 37 patient topics, all the top 10 retrieved trials were relevant. The system scored the highest on breast cancer (NDCG@10 = 0.9347, Precision@10 = 0.84) and the lowest on type 2 diabetes (NDCG@10 = 0.61, Precision@10 = 0.475). One probable reason could be that the information in breast cancer topics is relatively straightforward to match. Qualitative error analysis classified errors into four categories (e.g., difficulty in correctly matching inclusion criteria) and further highlighted strengths (e.g., ability to make clinical inference).

Conclusion

We demonstrated the feasibility of integrating LLMs in identifying and ranking suitable trials for patients across multiple disorders. Further work is required to assess the system's generalizability on other disorders and patient information sources. This system has the potential to expedite the patient-trial matching process by suggesting a ranked list of applicable trials to patients and clinicians.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Informatics in Medicine Unlocked
Informatics in Medicine Unlocked Medicine-Health Informatics
CiteScore
9.50
自引率
0.00%
发文量
282
审稿时长
39 days
期刊介绍: Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.
期刊最新文献
Usability and accessibility in mHealth stroke apps: An empirical assessment Spatiotemporal chest wall movement analysis using depth sensor imaging for detecting respiratory asynchrony Regression and classification of Windkessel parameters from non-invasive cardiovascular quantities using a fully connected neural network Patient2Trial: From patient to participant in clinical trials using large language models Structural modification of Naproxen; physicochemical, spectral, medicinal, and pharmacological evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1