Photo-induced in-situ synthesis of Cu2O@C nanocomposite for efficient photocatalytic evolution of hydrogen

Q3 Energy 燃料化学学报 Pub Date : 2024-05-01 DOI:10.1016/S1872-5813(23)60400-1
LI Na , MAO Shuhong , YAN Wenjun , ZHANG Jing
{"title":"Photo-induced in-situ synthesis of Cu2O@C nanocomposite for efficient photocatalytic evolution of hydrogen","authors":"LI Na ,&nbsp;MAO Shuhong ,&nbsp;YAN Wenjun ,&nbsp;ZHANG Jing","doi":"10.1016/S1872-5813(23)60400-1","DOIUrl":null,"url":null,"abstract":"<div><p>Cuprous oxide (Cu<sub>2</sub>O) is an ideal visible light catalyst owing to its narrow band gap, environmental benignity and abundant storage; however, the fast recombination of photogenerated charge carriers and poor stability of Cu<sub>2</sub>O has impeded its application in photocatalysis. Herein, we demonstrate that Cu<sub>2</sub>O@C nanocomposite can spontaneously evolve from a methanol aqueous solution containing cupric ions under the induction of irradiation. Compared with the traditional carbon coating method, the Cu<sub>2</sub>O@C nanocomposite obtained by the photo-induced <em>in-situ</em> synthesis can reserve superior original characteristics of the semiconductor under mild reaction conditions, promote the charge transfer and enhance the separation efficiency of charge carriers; in addition, the carbon shells can also effectively prevent Cu<sub>2</sub>O from photo-corrosion. As a result, the Cu<sub>2</sub>O@C nanocomposite exhibits excellent photocatalytic activity in the hydrogen evolution in comparison with the Cu<sub>2</sub>O particles; the H<sub>2</sub> evolution rate over the Cu<sub>2</sub>O@C nanocomposite reaches 1.28 mmol/(g·h) under visible light, compared with the value of 0.065 mmol/(g·h) over Cu<sub>2</sub>O. Moreover, the Cu<sub>2</sub>O@C nanocomposite displays good cycle stability, viz., without any deactivation in the catalytic activity after five cycles.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 5","pages":"Pages 698-706"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581323604001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Cuprous oxide (Cu2O) is an ideal visible light catalyst owing to its narrow band gap, environmental benignity and abundant storage; however, the fast recombination of photogenerated charge carriers and poor stability of Cu2O has impeded its application in photocatalysis. Herein, we demonstrate that Cu2O@C nanocomposite can spontaneously evolve from a methanol aqueous solution containing cupric ions under the induction of irradiation. Compared with the traditional carbon coating method, the Cu2O@C nanocomposite obtained by the photo-induced in-situ synthesis can reserve superior original characteristics of the semiconductor under mild reaction conditions, promote the charge transfer and enhance the separation efficiency of charge carriers; in addition, the carbon shells can also effectively prevent Cu2O from photo-corrosion. As a result, the Cu2O@C nanocomposite exhibits excellent photocatalytic activity in the hydrogen evolution in comparison with the Cu2O particles; the H2 evolution rate over the Cu2O@C nanocomposite reaches 1.28 mmol/(g·h) under visible light, compared with the value of 0.065 mmol/(g·h) over Cu2O. Moreover, the Cu2O@C nanocomposite displays good cycle stability, viz., without any deactivation in the catalytic activity after five cycles.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光诱导原位合成 Cu2O@C 纳米复合材料,用于高效光催化氢气进化
氧化亚铜(Cu2O)具有带隙窄、对环境无害和储量丰富等优点,是一种理想的可见光催化剂;然而,Cu2O 光生电荷载流子的快速重组和稳定性差阻碍了它在光催化中的应用。在此,我们证明了 Cu2O@C 纳米复合材料能在辐照诱导下从含有铜离子的甲醇水溶液中自发演化出来。与传统的碳包覆法相比,光诱导原位合成法得到的 Cu2O@C 纳米复合材料在温和的反应条件下能保留半导体原有的优良特性,促进电荷转移,提高电荷载流子的分离效率;此外,碳壳还能有效防止 Cu2O 的光腐蚀。因此,与 Cu2O 颗粒相比,Cu2O@C 纳米复合材料在氢气进化方面表现出优异的光催化活性;在可见光下,Cu2O@C 纳米复合材料的氢气进化率达到 1.28 mmol/(g-h),而 Cu2O 的氢气进化率仅为 0.065 mmol/(g-h)。此外,Cu2O@C 纳米复合材料显示出良好的循环稳定性,即在五个循环后催化活性没有失活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
燃料化学学报
燃料化学学报 Chemical Engineering-Chemical Engineering (all)
CiteScore
2.80
自引率
0.00%
发文量
5825
期刊介绍: Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.
期刊最新文献
Direct liquefaction behavior of Shenhua Shangwan coal under CO containing atmosphere Mechanism of methanol synthesis from CO2 hydrogenation over Rh16/In2O3 catalysts: A combined study on density functional theory and microkinetic modeling Effect of the RhnNin alloy cluster size on the catalytic performance of RhnNin/TiO2 in the conversion of syngas to ethanol Hydrogen production via steam reforming of methanol on Cu/ZnO/Al2O3 catalysts: Effects of Al2O3 precursors Cr-MIL-101 derived nano Cr2O3 for highly efficient dehydrogenation of n-hexane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1