Testing distributional equality for functional random variables

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Journal of Multivariate Analysis Pub Date : 2024-04-22 DOI:10.1016/j.jmva.2024.105318
Bilol Banerjee
{"title":"Testing distributional equality for functional random variables","authors":"Bilol Banerjee","doi":"10.1016/j.jmva.2024.105318","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we present a nonparametric method for the general two-sample problem involving functional random variables modeled as elements of a separable Hilbert space <span><math><mi>H</mi></math></span>. First, we present a general recipe based on linear projections to construct a measure of dissimilarity between two probability distributions on <span><math><mi>H</mi></math></span>. In particular, we consider a measure based on the energy statistic and present some of its nice theoretical properties. A plug-in estimator of this measure is used as the test statistic to construct a general two-sample test. Large sample distribution of this statistic is derived both under null and alternative hypotheses. However, since the quantiles of the limiting null distribution are analytically intractable, the test is calibrated using the permutation method. We prove the large sample consistency of the resulting permutation test under fairly general assumptions. We also study the efficiency of the proposed test by establishing a new local asymptotic normality result for functional random variables. Using that result, we derive the asymptotic distribution of the permuted test statistic and the asymptotic power of the permutation test under local contiguous alternatives. This establishes that the permutation test is statistically efficient in the Pitman sense. Extensive simulation studies are carried out and a real data set is analyzed to compare the performance of our proposed test with some state-of-the-art methods.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"203 ","pages":"Article 105318"},"PeriodicalIF":1.4000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000253","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we present a nonparametric method for the general two-sample problem involving functional random variables modeled as elements of a separable Hilbert space H. First, we present a general recipe based on linear projections to construct a measure of dissimilarity between two probability distributions on H. In particular, we consider a measure based on the energy statistic and present some of its nice theoretical properties. A plug-in estimator of this measure is used as the test statistic to construct a general two-sample test. Large sample distribution of this statistic is derived both under null and alternative hypotheses. However, since the quantiles of the limiting null distribution are analytically intractable, the test is calibrated using the permutation method. We prove the large sample consistency of the resulting permutation test under fairly general assumptions. We also study the efficiency of the proposed test by establishing a new local asymptotic normality result for functional random variables. Using that result, we derive the asymptotic distribution of the permuted test statistic and the asymptotic power of the permutation test under local contiguous alternatives. This establishes that the permutation test is statistically efficient in the Pitman sense. Extensive simulation studies are carried out and a real data set is analyzed to compare the performance of our proposed test with some state-of-the-art methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
测试函数式随机变量的分布相等性
在本文中,我们提出了一种非参数方法,用于解决涉及作为可分离希尔伯特空间 H 的元素建模的函数式随机变量的一般双样本问题。首先,我们提出了一种基于线性投影的一般方法,用于构建 H 上两个概率分布之间的不相似度量。这个度量的插件估计器被用作检验统计量,以构建一般的双样本检验。在零假设和备择假设下,该统计量的大样本分布均可得出。然而,由于极限零分布的量级在分析上是难以处理的,因此该检验使用 permutation 方法进行校准。我们在相当一般的假设条件下证明了所得到的置换检验的大样本一致性。我们还通过为函数式随机变量建立一个新的局部渐近正态性结果,研究了所提出的检验的效率。利用这一结果,我们推导出了在局部连续替代条件下,置换检验统计量的渐近分布和置换检验的渐近功率。这证明了在皮特曼意义上,置换检验在统计上是有效的。我们进行了广泛的模拟研究,并分析了一个真实数据集,以比较我们提出的检验方法与一些最先进方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
期刊最新文献
Maximum likelihood estimation of elliptical tail Covariance parameter estimation of Gaussian processes with approximated functional inputs PDE-regularised spatial quantile regression Diagnostic checking of periodic vector autoregressive time series models with dependent errors A conditional distribution function-based measure for independence and K-sample tests in multivariate data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1