Maximum likelihood estimation of elliptical tail

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Journal of Multivariate Analysis Pub Date : 2024-11-10 DOI:10.1016/j.jmva.2024.105382
Moosup Kim , Sangyeol Lee
{"title":"Maximum likelihood estimation of elliptical tail","authors":"Moosup Kim ,&nbsp;Sangyeol Lee","doi":"10.1016/j.jmva.2024.105382","DOIUrl":null,"url":null,"abstract":"<div><div>This study is focused on the efficient estimation of the elliptical tail. Initially, we derive the density function of the spectral measure of an elliptical distribution concerning a dominating measure on the unit sphere, which consequently leads to the density function of the elliptical tail. Subsequently, we propose a maximum likelihood estimation based on the derived density function class. The resulting maximum likelihood estimator (MLE) is proven to be consistent and asymptotically normal. Moreover, it is demonstrated that the MLE is asymptotically efficient, with the added advantage that its asymptotic covariance matrix can be feasibly estimated at a low computational cost. A simulation study and real data analysis are conducted to illustrate the efficacy of the proposed method.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"205 ","pages":"Article 105382"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000897","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This study is focused on the efficient estimation of the elliptical tail. Initially, we derive the density function of the spectral measure of an elliptical distribution concerning a dominating measure on the unit sphere, which consequently leads to the density function of the elliptical tail. Subsequently, we propose a maximum likelihood estimation based on the derived density function class. The resulting maximum likelihood estimator (MLE) is proven to be consistent and asymptotically normal. Moreover, it is demonstrated that the MLE is asymptotically efficient, with the added advantage that its asymptotic covariance matrix can be feasibly estimated at a low computational cost. A simulation study and real data analysis are conducted to illustrate the efficacy of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
椭圆尾部的最大似然估计
本研究的重点是椭圆尾部的有效估计。首先,我们推导出椭圆分布的频谱度量的密度函数,它涉及单位球面上的支配度量,从而得出椭圆尾部的密度函数。随后,我们根据推导出的密度函数类提出了最大似然估计法。由此得到的最大似然估计器(MLE)被证明是一致的,而且渐近正态。此外,该方法还证明了最大似然估计是渐近有效的,而且其渐近协方差矩阵可以用较低的计算成本进行估计。为了说明所提方法的有效性,还进行了模拟研究和实际数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
期刊最新文献
Sparse functional varying-coefficient mixture regression Maximum likelihood estimation of elliptical tail Covariance parameter estimation of Gaussian processes with approximated functional inputs PDE-regularised spatial quantile regression Diagnostic checking of periodic vector autoregressive time series models with dependent errors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1