Timothy Patrick Jenkins, Norbert Ács, Emma Wenzel Arendrup, Abbie Swift, Ágnes Duzs, Ioanna Chatzigiannidou, Michael Pichler, Tiia Kittilä, Laura Peachey, Lone Gram, Nuria Canibe, Andreas Hougaard Laustsen, Susanne Brix, Sandra Wingaard Thrane
{"title":"Protecting the piglet gut microbiota against ETEC-mediated post-weaning diarrhoea using specific binding proteins","authors":"Timothy Patrick Jenkins, Norbert Ács, Emma Wenzel Arendrup, Abbie Swift, Ágnes Duzs, Ioanna Chatzigiannidou, Michael Pichler, Tiia Kittilä, Laura Peachey, Lone Gram, Nuria Canibe, Andreas Hougaard Laustsen, Susanne Brix, Sandra Wingaard Thrane","doi":"10.1038/s41522-024-00514-8","DOIUrl":null,"url":null,"abstract":"<p>Post-weaning diarrhoea (PWD) in piglets presents a widespread problem in industrial pig production and is often caused by enterotoxigenic <i>E. coli</i> (ETEC) strains. Current solutions, such as antibiotics and medicinal zinc oxide, are unsustainable and are increasingly being prohibited, resulting in a dire need for novel solutions. Thus, in this study, we propose and evaluate a protein-based feed additive, comprising two bivalent heavy chain variable domain (V<sub>H</sub>H) constructs (V<sub>H</sub>H-(GGGGS)<sub>3</sub>-V<sub>H</sub>H, BL1.2 and BL2.2) as an alternative solution to manage PWD. We demonstrate in vitro that these constructs bind to ETEC toxins and fimbriae, whilst they do no affect bacterial growth rate. Furthermore, in a pig study, we show that oral administration of these constructs after ETEC challenge reduced ETEC proliferation when compared to challenged control piglets (1-2 log<sub>10</sub> units difference in gene copies and bacterial count/g faeces across day 2–7) and resulted in week 1 enrichment of three bacterial families (<i>Prevotellaceae</i> (estimate: 1.12 ± 0.25, <i>q</i> = 0.0054)<i>, Lactobacillaceae</i> (estimate: 2.86 ± 0.52, <i>q</i> = 0.0012), and <i>Ruminococcaceae</i> (estimate: 0.66 ± 0.18, <i>q</i> = 0.049)) within the gut microbiota that appeared later in challenged control piglets, thus pointing to an earlier transition towards a more mature gut microbiota. These data suggest that such V<sub>H</sub>H constructs may find utility in industrial pig production as a feed additive for tackling ETEC and reducing the risk of PWD in piglet populations.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"8 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-024-00514-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Post-weaning diarrhoea (PWD) in piglets presents a widespread problem in industrial pig production and is often caused by enterotoxigenic E. coli (ETEC) strains. Current solutions, such as antibiotics and medicinal zinc oxide, are unsustainable and are increasingly being prohibited, resulting in a dire need for novel solutions. Thus, in this study, we propose and evaluate a protein-based feed additive, comprising two bivalent heavy chain variable domain (VHH) constructs (VHH-(GGGGS)3-VHH, BL1.2 and BL2.2) as an alternative solution to manage PWD. We demonstrate in vitro that these constructs bind to ETEC toxins and fimbriae, whilst they do no affect bacterial growth rate. Furthermore, in a pig study, we show that oral administration of these constructs after ETEC challenge reduced ETEC proliferation when compared to challenged control piglets (1-2 log10 units difference in gene copies and bacterial count/g faeces across day 2–7) and resulted in week 1 enrichment of three bacterial families (Prevotellaceae (estimate: 1.12 ± 0.25, q = 0.0054), Lactobacillaceae (estimate: 2.86 ± 0.52, q = 0.0012), and Ruminococcaceae (estimate: 0.66 ± 0.18, q = 0.049)) within the gut microbiota that appeared later in challenged control piglets, thus pointing to an earlier transition towards a more mature gut microbiota. These data suggest that such VHH constructs may find utility in industrial pig production as a feed additive for tackling ETEC and reducing the risk of PWD in piglet populations.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.