Pub Date : 2026-01-14DOI: 10.1038/s41522-025-00902-8
Oscar W H Wong, Zhilu Xu, Sandra S M Chan, Flora Y M Mo, Caroline K S Shea, Qi Su, Monica Y T Wan, Chun Pan Cheung, Jessica Y L Ching, Whitney Tang, Hein M Tun, Francis K L Chan, Siew C Ng
Anxiety and sensory hyperresponsiveness are common in children with autism spectrum disorder (ASD), but effective treatments are lacking. Targeting the microbiota-gut-brain axis is a promising strategy. This open-label pilot study evaluated SCM06, a novel synbiotic designed to target anxiety and sensory hyperresponsiveness, in 30 children with ASD (mean age 8.2 years, 22 males). We assessed symptom improvement, compliance, and safety, and collected stool samples for metagenomics and metabolomic analysis over 12 weeks. SCM06 was safe and well-tolerated, and significant improvements were observed in anxiety, sensory hyperresponsiveness, and abdominal pain. Following SCM06 treatment, increase in Bifidobacterium pseudocatenulatum was associated with improved functional abdominal pain (p = 0.0011, p_adj = 0.054), while the abundances of valeric acid and butyric acid increased (p_adj = 0.004 and p_adj = 0.072). Key microbial species, Coprococcus comes and Veillonella dispar, were candidate mediators of symptom improvements. Further randomised controlled trials are warranted to confirm its clinical efficacy.
{"title":"A novel synbiotic (SCM06) for anxiety and sensory hyperresponsiveness in children with autism spectrum disorder: an open-label pilot study.","authors":"Oscar W H Wong, Zhilu Xu, Sandra S M Chan, Flora Y M Mo, Caroline K S Shea, Qi Su, Monica Y T Wan, Chun Pan Cheung, Jessica Y L Ching, Whitney Tang, Hein M Tun, Francis K L Chan, Siew C Ng","doi":"10.1038/s41522-025-00902-8","DOIUrl":"https://doi.org/10.1038/s41522-025-00902-8","url":null,"abstract":"<p><p>Anxiety and sensory hyperresponsiveness are common in children with autism spectrum disorder (ASD), but effective treatments are lacking. Targeting the microbiota-gut-brain axis is a promising strategy. This open-label pilot study evaluated SCM06, a novel synbiotic designed to target anxiety and sensory hyperresponsiveness, in 30 children with ASD (mean age 8.2 years, 22 males). We assessed symptom improvement, compliance, and safety, and collected stool samples for metagenomics and metabolomic analysis over 12 weeks. SCM06 was safe and well-tolerated, and significant improvements were observed in anxiety, sensory hyperresponsiveness, and abdominal pain. Following SCM06 treatment, increase in Bifidobacterium pseudocatenulatum was associated with improved functional abdominal pain (p = 0.0011, p<sub>_adj</sub> = 0.054), while the abundances of valeric acid and butyric acid increased (p<sub>_adj</sub> = 0.004 and p<sub>_adj</sub> = 0.072). Key microbial species, Coprococcus comes and Veillonella dispar, were candidate mediators of symptom improvements. Further randomised controlled trials are warranted to confirm its clinical efficacy.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":" ","pages":""},"PeriodicalIF":9.2,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145985245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-14DOI: 10.1038/s41522-026-00916-w
Ashley N Hall, Simmi Manuja, Laura M Payling, Luis F Romero, Frederic J Hoerr, Jacob Shields, Charles Hofacre, Dwi Susanti, Dharanesh Gangaiah, Germán Plata, Arvind Kumar
Sub-Clinical Necrotic Enteritis (SCNE), caused by toxin-producing Clostridium perfringens, is a major challenge in poultry production. SCNE has traditionally been managed with in-feed antibiotics; however, increasing concerns about the spread of antimicrobial resistance call for antibiotic-free strategies for its control. We recently described an NE control strategy leveraging Limosilactobacillus reuteri probiotic strains genetically engineered to deliver nanobodies against alpha toxin and NetB from C. perfringens in the poultry gut. Here, in a controlled study under SCNE conditions, we found that the engineered strains significantly improved feed conversion ratios and weight gain of broilers, outperforming treatment with either a prophylactic antibiotic or the wild-type probiotic strains. To investigate the systemic factors contributing to these performance differences, we analyzed histomorphometrics of the small intestine, microbial metatranscriptomics of jejunal contents, and gene expression from the jejunum and liver tissues. Our results confirmed the in situ expression of the nanobodies and provided evidence that nanobody delivery mitigates SCNE-associated inflammation in the jejunum and toxin-induced damage in the liver, leading to a more quiescent immune state, lower oxidative stress, and improved growth performance. Our findings demonstrate the potential of probiotic-vectored nanobody delivery as an effective strategy for targeting gut antigens across a range of diseases.
{"title":"Lactobacillus-vectored nanobodies improve broiler productivity under sub-clinical necrotic enteritis with associated microbiome and transcriptome changes.","authors":"Ashley N Hall, Simmi Manuja, Laura M Payling, Luis F Romero, Frederic J Hoerr, Jacob Shields, Charles Hofacre, Dwi Susanti, Dharanesh Gangaiah, Germán Plata, Arvind Kumar","doi":"10.1038/s41522-026-00916-w","DOIUrl":"https://doi.org/10.1038/s41522-026-00916-w","url":null,"abstract":"<p><p>Sub-Clinical Necrotic Enteritis (SCNE), caused by toxin-producing Clostridium perfringens, is a major challenge in poultry production. SCNE has traditionally been managed with in-feed antibiotics; however, increasing concerns about the spread of antimicrobial resistance call for antibiotic-free strategies for its control. We recently described an NE control strategy leveraging Limosilactobacillus reuteri probiotic strains genetically engineered to deliver nanobodies against alpha toxin and NetB from C. perfringens in the poultry gut. Here, in a controlled study under SCNE conditions, we found that the engineered strains significantly improved feed conversion ratios and weight gain of broilers, outperforming treatment with either a prophylactic antibiotic or the wild-type probiotic strains. To investigate the systemic factors contributing to these performance differences, we analyzed histomorphometrics of the small intestine, microbial metatranscriptomics of jejunal contents, and gene expression from the jejunum and liver tissues. Our results confirmed the in situ expression of the nanobodies and provided evidence that nanobody delivery mitigates SCNE-associated inflammation in the jejunum and toxin-induced damage in the liver, leading to a more quiescent immune state, lower oxidative stress, and improved growth performance. Our findings demonstrate the potential of probiotic-vectored nanobody delivery as an effective strategy for targeting gut antigens across a range of diseases.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":" ","pages":""},"PeriodicalIF":9.2,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145985242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plants have evolved intricate defense strategies to combat herbivorous insect attacks, including the production of toxic secondary metabolites and the attraction of natural enemies. While bacterial-mediated direct toxicity in plant defenses has been demonstrated, the ecological mechanisms by which plants utilize bacteria to indirectly modulate the behavior of natural enemies remain insufficiently explored. In this study, we observed a significant enrichment of Staphylococcus in the tissues of zucchini Cucurbita pepo following infestation by the cotton-melon aphid Aphis gossypii. These bacteria traced from the damaged plant stems and leaves were subsequently found both in aphids and in their secreted honeydew. Among the four dominant bacterial strains isolated from the honeydew, Staphylococcus sp. markedly promoted oviposition preference in mated female ladybird beetles Propylea japonica. Further investigation identified a volatile organic compound, 4-Isopropylbenzyl alcohol, released by Staphylococcus sp. that stimulated strong antennal responses and attracted P. japonica to lay eggs. Collectively, our findings demonstrate that zucchini plants can employ indirect defense against A. gossypii through the enrichment of specific bacteria, revealing a novel ecological role for bacteria in plant defense and expanding our understanding of complex plant-microbe-insect-natural enemy interactions.
{"title":"From leaves to aphid honeydew: the zucchini plants enrich bacterium to recruit natural enemy to resist herbivore attacks.","authors":"Yue Liu, Jing Sun, Boya Jiao, Shichang Zhang, Yu Peng, Yao Zhao","doi":"10.1038/s41522-026-00914-y","DOIUrl":"https://doi.org/10.1038/s41522-026-00914-y","url":null,"abstract":"<p><p>Plants have evolved intricate defense strategies to combat herbivorous insect attacks, including the production of toxic secondary metabolites and the attraction of natural enemies. While bacterial-mediated direct toxicity in plant defenses has been demonstrated, the ecological mechanisms by which plants utilize bacteria to indirectly modulate the behavior of natural enemies remain insufficiently explored. In this study, we observed a significant enrichment of Staphylococcus in the tissues of zucchini Cucurbita pepo following infestation by the cotton-melon aphid Aphis gossypii. These bacteria traced from the damaged plant stems and leaves were subsequently found both in aphids and in their secreted honeydew. Among the four dominant bacterial strains isolated from the honeydew, Staphylococcus sp. markedly promoted oviposition preference in mated female ladybird beetles Propylea japonica. Further investigation identified a volatile organic compound, 4-Isopropylbenzyl alcohol, released by Staphylococcus sp. that stimulated strong antennal responses and attracted P. japonica to lay eggs. Collectively, our findings demonstrate that zucchini plants can employ indirect defense against A. gossypii through the enrichment of specific bacteria, revealing a novel ecological role for bacteria in plant defense and expanding our understanding of complex plant-microbe-insect-natural enemy interactions.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":" ","pages":""},"PeriodicalIF":9.2,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145966646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The gut microbiome is increasingly implicated in colorectal cancer (CRC), yet the functional signatures associated with disease progression remain poorly resolved across populations. We performed an assembly-based metagenomic analysis of more than 500 samples from three geographically distinct cohorts to characterize resistome and virulome patterns associated with CRC. Using a cross-validated modeling framework based on Partial Least Squares (PLS) regression, we identified two reproducible latent functional gradients that structured variation in antimicrobial-resistance and virulence-factor profiles. One gradient was enriched for adhesion, efflux, and biofilm-associated functions, while the second reflected immunomodulatory and barrier-related pathways. These components were statistically robust, directionally stable across cohorts, and consistent with functional themes frequently reported in CRC microbiome studies. To summarize variation along these gradients, we derived an exploratory Dual-Axis Index (DAI) based on the two stable PLS components. Although its discriminative performance was moderate, the DAI provided an interpretable low-dimensional representation of how resistome-virulome patterns differed across healthy, adenoma, and carcinoma states. These results suggest that functional gene profiles in CRC are organized along reproducible statistical axes, and highlight functional modules, such as adhesion-, iron-associated, and immune-interaction pathways that may complement taxonomic or metabolic biomarkers in future multimodal approaches. Our work provides a reproducible, assembly-based framework for examining the functional organization of CRC-associated microbiomes across diverse populations.
{"title":"Cross-cohort resistome and virulome gradients structure the colorectal cancer microbiome.","authors":"AbdulAziz Ascandari, Suleiman Aminu, Rachid Benhida, Rachid Daoud","doi":"10.1038/s41522-025-00905-5","DOIUrl":"https://doi.org/10.1038/s41522-025-00905-5","url":null,"abstract":"<p><p>The gut microbiome is increasingly implicated in colorectal cancer (CRC), yet the functional signatures associated with disease progression remain poorly resolved across populations. We performed an assembly-based metagenomic analysis of more than 500 samples from three geographically distinct cohorts to characterize resistome and virulome patterns associated with CRC. Using a cross-validated modeling framework based on Partial Least Squares (PLS) regression, we identified two reproducible latent functional gradients that structured variation in antimicrobial-resistance and virulence-factor profiles. One gradient was enriched for adhesion, efflux, and biofilm-associated functions, while the second reflected immunomodulatory and barrier-related pathways. These components were statistically robust, directionally stable across cohorts, and consistent with functional themes frequently reported in CRC microbiome studies. To summarize variation along these gradients, we derived an exploratory Dual-Axis Index (DAI) based on the two stable PLS components. Although its discriminative performance was moderate, the DAI provided an interpretable low-dimensional representation of how resistome-virulome patterns differed across healthy, adenoma, and carcinoma states. These results suggest that functional gene profiles in CRC are organized along reproducible statistical axes, and highlight functional modules, such as adhesion-, iron-associated, and immune-interaction pathways that may complement taxonomic or metabolic biomarkers in future multimodal approaches. Our work provides a reproducible, assembly-based framework for examining the functional organization of CRC-associated microbiomes across diverse populations.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":" ","pages":""},"PeriodicalIF":9.2,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145960008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-10DOI: 10.1038/s41522-026-00912-0
Chunhao Li, Yue Fan, Xingming Chen
The oral-gut axis is a key pathway through which oral microbiota modulate systemic immunity. Oral bacteria and their derivatives, including microbial-associated molecular patterns and extracellular vesicles, can translocate to the gut, evade mucosal defenses, interact with local immune cells, and disrupt epithelial integrity. This review highlights mechanisms of gut colonization, immune modulation via pattern recognition receptors, and contributions to distal organ inflammation, providing a framework for understanding microbiota-driven systemic diseases.
{"title":"Oral microbiota-driven immune modulation along the oral-gut axis: from local signals to systemic inflammation.","authors":"Chunhao Li, Yue Fan, Xingming Chen","doi":"10.1038/s41522-026-00912-0","DOIUrl":"https://doi.org/10.1038/s41522-026-00912-0","url":null,"abstract":"<p><p>The oral-gut axis is a key pathway through which oral microbiota modulate systemic immunity. Oral bacteria and their derivatives, including microbial-associated molecular patterns and extracellular vesicles, can translocate to the gut, evade mucosal defenses, interact with local immune cells, and disrupt epithelial integrity. This review highlights mechanisms of gut colonization, immune modulation via pattern recognition receptors, and contributions to distal organ inflammation, providing a framework for understanding microbiota-driven systemic diseases.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":" ","pages":""},"PeriodicalIF":9.2,"publicationDate":"2026-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145949259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-09DOI: 10.1038/s41522-025-00861-0
Liisa Veerus, Anushka Subrahmanian, Martin J Blaser
We propose the term testobolome, analogous to the estrobolome, to describe gut bacteria that metabolize testosterone. Testosterone undergoes microbial transformations similar to estrogens, potentially influencing host hormone homeostasis and health. This review defines the testobolome, identifies its known members, and explores mechanisms that are shared or distinct from the estrobolome. We outline a framework for future research into microbiome-mediated steroid metabolism, including its role in aging and hormone-driven diseases.
{"title":"The testobolome in microbial testosterone metabolism and human health.","authors":"Liisa Veerus, Anushka Subrahmanian, Martin J Blaser","doi":"10.1038/s41522-025-00861-0","DOIUrl":"10.1038/s41522-025-00861-0","url":null,"abstract":"<p><p>We propose the term testobolome, analogous to the estrobolome, to describe gut bacteria that metabolize testosterone. Testosterone undergoes microbial transformations similar to estrogens, potentially influencing host hormone homeostasis and health. This review defines the testobolome, identifies its known members, and explores mechanisms that are shared or distinct from the estrobolome. We outline a framework for future research into microbiome-mediated steroid metabolism, including its role in aging and hormone-driven diseases.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"12 1","pages":"9"},"PeriodicalIF":9.2,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12789469/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145945262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Implant-associated infections (IAIs) arise from immune dysregulation and the resilience of bacterial biofilms, which create a permissive niche for persistent infection. Biofilms further suppress host immunity and impair repair. Advances in nanoengineered surfaces and multifunctional antimicrobial coatings, together with gas-releasing and stimulus-responsive nanoplatforms, offer effective non-antibiotic strategies to inhibit colonization, disrupt biofilms, and modulate local immunity. This review summarizes emerging immune-informed approaches for treating IAIs.
{"title":"Emerging non-antibiotic strategies for implant-associated biofilm infections by reprogramming the dysregulated immune microenvironment.","authors":"Yu Zhang, Zhuo Dai, Xiaoye Li, Ao He, Jingben Zheng, Meng Ding, Qiang Li, Yongbin Mou, Dongliang Yang, Weijun Xiu, Heng Dong","doi":"10.1038/s41522-025-00907-3","DOIUrl":"https://doi.org/10.1038/s41522-025-00907-3","url":null,"abstract":"<p><p>Implant-associated infections (IAIs) arise from immune dysregulation and the resilience of bacterial biofilms, which create a permissive niche for persistent infection. Biofilms further suppress host immunity and impair repair. Advances in nanoengineered surfaces and multifunctional antimicrobial coatings, together with gas-releasing and stimulus-responsive nanoplatforms, offer effective non-antibiotic strategies to inhibit colonization, disrupt biofilms, and modulate local immunity. This review summarizes emerging immune-informed approaches for treating IAIs.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":" ","pages":""},"PeriodicalIF":9.2,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145945283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-09DOI: 10.1038/s41522-025-00909-1
Annina R Meyer, Jan Patrick Tan, Mihnea Paul Mihaila, Michelle Neugebauer, Laura Nyström, Nicholas A Bokulich
Large-scale, decentralized microbiome sampling surveys and citizen science initiatives often require periods of storage at ambient temperature, potentially altering sample composition during collection and transport. We developed a generalizable framework to quantify and model these biases using sourdough as a tractable fermentation system, with samples subjected to controlled storage conditions (4 °C, 17 °C, 30 °C, regularly sampled up to 28 days). Machine-learning models paired with multi-omics profiling-including microbiome, targeted and untargeted metabolome profiling, and cultivation-revealed temperature-dependent shifts in bacterial community structure and metabolic profiles, while fungal communities remained stable. Storage induced ecological restructuring, marked by reduced network modularity and increased centrality of dominant taxa at higher temperatures. Notably, storage duration and temperature were strongly encoded in the multi-omics data, with temperature exerting a more pronounced influence than time. 24 of the top 25 predictors of storage condition were metabolites, underscoring functional layers as both sensitive to and informative of environmental exposure. These findings demonstrate that even short-term ambient storage (<2 days) can substantially reshape microbiome, metabolome, and biochemical profiles, posing risks to data comparability in decentralized studies and emphasizing the need to recognize and address such biases. Critically, the high predictability of storage history offers a path toward bias detection and correction- particularly when standardized collection protocols are infeasible, as is common in decentralized sampling contexts. Our approach enables robust quantification and modeling of such storage effects across multi-omics datasets, unlocking more accurate interpretation of large-scale microbiome surveys.
{"title":"Shipped and shifted: modeling collection-induced bias in microbiome multi-omics using a tractable fermentation system.","authors":"Annina R Meyer, Jan Patrick Tan, Mihnea Paul Mihaila, Michelle Neugebauer, Laura Nyström, Nicholas A Bokulich","doi":"10.1038/s41522-025-00909-1","DOIUrl":"https://doi.org/10.1038/s41522-025-00909-1","url":null,"abstract":"<p><p>Large-scale, decentralized microbiome sampling surveys and citizen science initiatives often require periods of storage at ambient temperature, potentially altering sample composition during collection and transport. We developed a generalizable framework to quantify and model these biases using sourdough as a tractable fermentation system, with samples subjected to controlled storage conditions (4 °C, 17 °C, 30 °C, regularly sampled up to 28 days). Machine-learning models paired with multi-omics profiling-including microbiome, targeted and untargeted metabolome profiling, and cultivation-revealed temperature-dependent shifts in bacterial community structure and metabolic profiles, while fungal communities remained stable. Storage induced ecological restructuring, marked by reduced network modularity and increased centrality of dominant taxa at higher temperatures. Notably, storage duration and temperature were strongly encoded in the multi-omics data, with temperature exerting a more pronounced influence than time. 24 of the top 25 predictors of storage condition were metabolites, underscoring functional layers as both sensitive to and informative of environmental exposure. These findings demonstrate that even short-term ambient storage (<2 days) can substantially reshape microbiome, metabolome, and biochemical profiles, posing risks to data comparability in decentralized studies and emphasizing the need to recognize and address such biases. Critically, the high predictability of storage history offers a path toward bias detection and correction- particularly when standardized collection protocols are infeasible, as is common in decentralized sampling contexts. Our approach enables robust quantification and modeling of such storage effects across multi-omics datasets, unlocking more accurate interpretation of large-scale microbiome surveys.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":" ","pages":""},"PeriodicalIF":9.2,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145945308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-09DOI: 10.1038/s41522-025-00892-7
Zaira Heredia-Ponce, Aurélien Bailly, Leo Eberl
The establishment of microbial biofilms, communities embedded in self-produced extracellular matrices, poses growing challenges for health and antimicrobial management. Understanding biofilm formation is crucial for developing control and eradication strategies. In response to environmental cues, planktonic bacteria adopt a sessile lifestyle, coordinating growth with matrix production. We monitored cellulose biofilm formation by Pseudomonas sp. IsoF in real time using single-step fluorescent stains. Live-tracking of polysaccharide synthesis revealed dynamic matrix arrangements shaping final biofilm structure. Cellulose determined substratum adherence, cell contacts, and colony patterning in IsoF. Biofilms formed in flow-cells and at air-liquid interfaces were remarkably similar in composition, progression, and architecture. Artificial elevation of intracellular c-di-GMP levels produced cellulose-dependent biofilms distinct from the wild type and induced a secondary exopolysaccharide. Our fluorescent probes provide real-time visualization of matrix development, enabling detailed analysis of biofilm architecture and regulation in standard laboratory conditions.
{"title":"High-resolution visualization of biofilm matrix development in space and time using fluorescent stains for cellulose.","authors":"Zaira Heredia-Ponce, Aurélien Bailly, Leo Eberl","doi":"10.1038/s41522-025-00892-7","DOIUrl":"https://doi.org/10.1038/s41522-025-00892-7","url":null,"abstract":"<p><p>The establishment of microbial biofilms, communities embedded in self-produced extracellular matrices, poses growing challenges for health and antimicrobial management. Understanding biofilm formation is crucial for developing control and eradication strategies. In response to environmental cues, planktonic bacteria adopt a sessile lifestyle, coordinating growth with matrix production. We monitored cellulose biofilm formation by Pseudomonas sp. IsoF in real time using single-step fluorescent stains. Live-tracking of polysaccharide synthesis revealed dynamic matrix arrangements shaping final biofilm structure. Cellulose determined substratum adherence, cell contacts, and colony patterning in IsoF. Biofilms formed in flow-cells and at air-liquid interfaces were remarkably similar in composition, progression, and architecture. Artificial elevation of intracellular c-di-GMP levels produced cellulose-dependent biofilms distinct from the wild type and induced a secondary exopolysaccharide. Our fluorescent probes provide real-time visualization of matrix development, enabling detailed analysis of biofilm architecture and regulation in standard laboratory conditions.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":" ","pages":""},"PeriodicalIF":9.2,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145945298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-09DOI: 10.1038/s41522-025-00866-9
Darby Steinman, Alyssa P Petersen, Yasmi Chibber, Caleb Crawford, Pranshu Tyagi, Hannah C Zierden
The composition of the vaginal microenvironment has significant implications for gynecologic and obstetric outcomes. Where a Lactobacillus-dominated microenvironment is considered optimal, a polymicrobial environment is associated with increased risk for female reproductive diseases. Recent work examined bacteria-derived extracellular vesicles (bEVs) as an important mode of microbe-host communication that may influence reproductive outcomes. However, in order to communicate with female reproductive tissues, bEVs must penetrate the protective cervicovaginal mucus barrier. We demonstrate increased diffusion of bEVs compared to whole bacteria. Additionally, we evaluate the uptake of bEVs by, and the resulting effects on, human vaginal epithelial, endometrial, and placental cells, highlighting potential mechanisms of action by which vaginal dysbiosis contributes to gynecologic and obstetric diseases. Taken together, our work demonstrates the ability of bEVs to mediate female reproductive outcomes and highlights their potential as therapeutic modalities for treating dysbiosis and dysbiosis-associated diseases in the female reproductive tract.
{"title":"Vaginal bacteria-derived extracellular vesicles diffuse through human cervicovaginal mucus to enable microbe-host signaling.","authors":"Darby Steinman, Alyssa P Petersen, Yasmi Chibber, Caleb Crawford, Pranshu Tyagi, Hannah C Zierden","doi":"10.1038/s41522-025-00866-9","DOIUrl":"10.1038/s41522-025-00866-9","url":null,"abstract":"<p><p>The composition of the vaginal microenvironment has significant implications for gynecologic and obstetric outcomes. Where a Lactobacillus-dominated microenvironment is considered optimal, a polymicrobial environment is associated with increased risk for female reproductive diseases. Recent work examined bacteria-derived extracellular vesicles (bEVs) as an important mode of microbe-host communication that may influence reproductive outcomes. However, in order to communicate with female reproductive tissues, bEVs must penetrate the protective cervicovaginal mucus barrier. We demonstrate increased diffusion of bEVs compared to whole bacteria. Additionally, we evaluate the uptake of bEVs by, and the resulting effects on, human vaginal epithelial, endometrial, and placental cells, highlighting potential mechanisms of action by which vaginal dysbiosis contributes to gynecologic and obstetric diseases. Taken together, our work demonstrates the ability of bEVs to mediate female reproductive outcomes and highlights their potential as therapeutic modalities for treating dysbiosis and dysbiosis-associated diseases in the female reproductive tract.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"12 1","pages":"10"},"PeriodicalIF":9.2,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12789437/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145945276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}