首页 > 最新文献

npj Biofilms and Microbiomes最新文献

英文 中文
GOS enhances BDNF-mediated mammary gland development in pubertal mice via the gut-brain axis. 果寡糖通过肠脑轴促进青春期小鼠BDNF介导的乳腺发育。
IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-19 DOI: 10.1038/s41522-024-00607-4
Yusong Ge, Yu Cao, Jialin Zhang, Feng Li, Jiaxin Wang, Mingyang Sun, Yuhao Liu, Xiaoyu Long, Wenjin Guo, Juxiong Liu, Shoupeng Fu

The "gut-brain axis" is involved in many physiological processes. However, its role in regulating mammary gland (MG) development remains unknown. In this study, we established the mice model of bilateral subdiaphragmatic vagotomy (Vago) to clarify the effects of "gut-brain axis" on MG development in pubertal mice. The results showed that Vago reduced the ratio of Lactobacillus and Bifidobacterium, neuronal excitability in the nucleus of solitary tract (NTS), and synthesis and secretion of BDNF, thereby slowing MG development. Transplanting the gut microbiota of Vago mice to recipient mice replicated these effects, and transplanting the gut microbiota of Control mice to Vago mice did not alleviate these effects. Galacto-Oligosaccharide (GOS), which up-regulates the ratio of Lactobacillus and Bifidobacterium, supplementation elevated NTS neuron excitability, synthesis and secretion of BDNF, and MG development, but Vago reversed these benefits. In conclusion, GOS enhances BDNF-mediated mammary gland development in pubertal mice via the "gut-brain axis".

肠脑轴 "参与了许多生理过程。然而,它在调控乳腺(MG)发育中的作用仍然未知。本研究建立了双侧膈下迷走神经切断术(Vago)小鼠模型,以阐明 "肠脑轴 "对青春期小鼠乳腺发育的影响。结果显示,Vago降低了乳酸杆菌和双歧杆菌的比例、孤束核(NTS)神经元的兴奋性以及BDNF的合成和分泌,从而减缓了MG的发育。将 Vago 小鼠的肠道微生物群移植到受体小鼠身上复制了这些效果,而将对照组小鼠的肠道微生物群移植到 Vago 小鼠身上并没有减轻这些效果。补充能上调乳酸杆菌和双歧杆菌比例的半乳寡糖(GOS)能提高 NTS 神经元的兴奋性、BDNF 的合成和分泌以及 MG 的发育,但 Vago 逆转了这些益处。总之,果寡糖可通过 "肠脑轴 "促进青春期小鼠BDNF介导的乳腺发育。
{"title":"GOS enhances BDNF-mediated mammary gland development in pubertal mice via the gut-brain axis.","authors":"Yusong Ge, Yu Cao, Jialin Zhang, Feng Li, Jiaxin Wang, Mingyang Sun, Yuhao Liu, Xiaoyu Long, Wenjin Guo, Juxiong Liu, Shoupeng Fu","doi":"10.1038/s41522-024-00607-4","DOIUrl":"https://doi.org/10.1038/s41522-024-00607-4","url":null,"abstract":"<p><p>The \"gut-brain axis\" is involved in many physiological processes. However, its role in regulating mammary gland (MG) development remains unknown. In this study, we established the mice model of bilateral subdiaphragmatic vagotomy (Vago) to clarify the effects of \"gut-brain axis\" on MG development in pubertal mice. The results showed that Vago reduced the ratio of Lactobacillus and Bifidobacterium, neuronal excitability in the nucleus of solitary tract (NTS), and synthesis and secretion of BDNF, thereby slowing MG development. Transplanting the gut microbiota of Vago mice to recipient mice replicated these effects, and transplanting the gut microbiota of Control mice to Vago mice did not alleviate these effects. Galacto-Oligosaccharide (GOS), which up-regulates the ratio of Lactobacillus and Bifidobacterium, supplementation elevated NTS neuron excitability, synthesis and secretion of BDNF, and MG development, but Vago reversed these benefits. In conclusion, GOS enhances BDNF-mediated mammary gland development in pubertal mice via the \"gut-brain axis\".</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"130"},"PeriodicalIF":7.8,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rumen microbiome and fat deposition in sheep: insights from a bidirectional mendelian randomization study. 绵羊瘤胃微生物组和脂肪沉积:双向泯灭随机研究的启示。
IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-17 DOI: 10.1038/s41522-024-00606-5
Yukun Zhang, Xiaoxue Zhang, Chong Li, Huibin Tian, Xiuxiu Weng, Changchun Lin, Deyin Zhang, Yuan Zhao, Xiaolong Li, Jiangbo Cheng, Liming Zhao, Dan Xu, Xiaobin Yang, Zhihua Jiang, Fadi Li, Weimin Wang

Rumen microbiotas are known to influence the fat deposition (FD) in sheep, but controversy over causality remains unresolved. Here, we performed microbiome-wide association studies (MWAS), microbiome genome-wide association analysis (mbGWAS) and bidirectional mendelian randomization (MR) analyses on 1,150 sheep with genotype data from whole-genome resequencing, 16S rRNA sequencing and multilevel FD-traits data. We quantified the proportion of individual variation in FD-traits explained by host genetics, rumen microbiota, and their interaction effects. We identified 32 rumen microbiota biomarkers including Bifidobacterium that were associated with FD-traits (Padj <0.05). Further, utilizing five MR methods, we identified eight causal associations between marker genera and FD-traits (Padj <0.05), including Butyrivibrio, Olsenella, p-2534-18B5 gut group, Prevotellaceae UCG-003, and Pseudobutyrivibrio causing forward causal effects on FD, and changes in Flexilinea and Suttonella induced by FD. To our knowledge, this is the inaugural attempt to employ MR in sheep to investigate the causal relationships between gastrointestinal microbiota and complex phenotypes, underscoring the potential for developing interventions related to adipose deposition in sheep from the perspective of the rumen microbiome.

已知瘤胃微生物可影响绵羊的脂肪沉积(FD),但因果关系的争议仍未解决。在这里,我们对1150只绵羊进行了全微生物组关联研究(MWAS)、微生物组全基因组关联分析(mbGWAS)和双向泯灭随机化(MR)分析,其基因型数据来自全基因组重测序、16S rRNA测序和多水平脂肪沉积性状数据。我们量化了宿主遗传学、瘤胃微生物群及其交互效应所解释的 FD 特质个体差异的比例。我们确定了包括双歧杆菌在内的 32 个瘤胃微生物群生物标记物与 FD-特征相关(Padj adj
{"title":"Rumen microbiome and fat deposition in sheep: insights from a bidirectional mendelian randomization study.","authors":"Yukun Zhang, Xiaoxue Zhang, Chong Li, Huibin Tian, Xiuxiu Weng, Changchun Lin, Deyin Zhang, Yuan Zhao, Xiaolong Li, Jiangbo Cheng, Liming Zhao, Dan Xu, Xiaobin Yang, Zhihua Jiang, Fadi Li, Weimin Wang","doi":"10.1038/s41522-024-00606-5","DOIUrl":"10.1038/s41522-024-00606-5","url":null,"abstract":"<p><p>Rumen microbiotas are known to influence the fat deposition (FD) in sheep, but controversy over causality remains unresolved. Here, we performed microbiome-wide association studies (MWAS), microbiome genome-wide association analysis (mbGWAS) and bidirectional mendelian randomization (MR) analyses on 1,150 sheep with genotype data from whole-genome resequencing, 16S rRNA sequencing and multilevel FD-traits data. We quantified the proportion of individual variation in FD-traits explained by host genetics, rumen microbiota, and their interaction effects. We identified 32 rumen microbiota biomarkers including Bifidobacterium that were associated with FD-traits (P<sub>adj</sub> <0.05). Further, utilizing five MR methods, we identified eight causal associations between marker genera and FD-traits (P<sub>adj</sub> <0.05), including Butyrivibrio, Olsenella, p-2534-18B5 gut group, Prevotellaceae UCG-003, and Pseudobutyrivibrio causing forward causal effects on FD, and changes in Flexilinea and Suttonella induced by FD. To our knowledge, this is the inaugural attempt to employ MR in sheep to investigate the causal relationships between gastrointestinal microbiota and complex phenotypes, underscoring the potential for developing interventions related to adipose deposition in sheep from the perspective of the rumen microbiome.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"129"},"PeriodicalIF":7.8,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570643/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene horizontal transfers and functional diversity negatively correlated with bacterial taxonomic diversity along a nitrogen gradient. 沿氮梯度的基因水平转移和功能多样性与细菌分类多样性呈负相关。
IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-16 DOI: 10.1038/s41522-024-00588-4
Jian-Xia Yang, Yang Peng, Qing-Yi Yu, Jun-Jie Yang, Yun-Hai Zhang, Hai-Yang Zhang, Catharine Allyssa Adams, Claire Elizabeth Willing, Cong Wang, Qiu-Shi Li, Xing-Guo Han, Cheng Gao

Horizontal gene transfer (HGT) mediated diversification is a critical force driving evolutionary and ecological processes. However, how HGT might relate to anthropogenic activity such as nitrogen addition, and its subsequent effect on functional diversity and cooccurrence networks remain unknown. Here we approach this knowledge gap by blending bacterial 16S rRNA gene amplicon and shotgun metagenomes from a platform of cessation of nitrogen additions and continuous nitrogen additions. We found that bacterial HGT events, functional genes, and virus diversities increased whereas bacterial taxonomic diversity decreased by nitrogen additions, resulting in a counterintuitive strong negative association between bacterial taxonomic and functional diversities. Nitrogen additions, especially the ceased one, complexified the cooccurrence network by increasing the contribution of vitamin B12 auxotrophic Acidobacteria, indicating cross-feeding. These findings advance our perceptions of the causes and consequences of the diversification process in community ecology.

水平基因转移(HGT)介导的多样化是推动进化和生态过程的关键力量。然而,HGT 与氮添加等人为活动的关系及其对功能多样性和共生网络的影响仍然未知。在这里,我们通过混合细菌 16S rRNA 基因扩增片段和来自停止加氮和持续加氮平台的散弹枪元基因组来填补这一知识空白。我们发现,细菌的 HGT 事件、功能基因和病毒多样性随着氮添加量的增加而增加,而细菌分类多样性则随着氮添加量的增加而减少,从而导致细菌分类多样性和功能多样性之间出现了一种反直觉的强烈负相关。氮添加(尤其是停止添加)增加了维生素 B12 辅助型酸杆菌的贡献,从而使共生网络复杂化,这表明存在交叉觅食现象。这些发现推进了我们对群落生态学中多样化过程的原因和后果的认识。
{"title":"Gene horizontal transfers and functional diversity negatively correlated with bacterial taxonomic diversity along a nitrogen gradient.","authors":"Jian-Xia Yang, Yang Peng, Qing-Yi Yu, Jun-Jie Yang, Yun-Hai Zhang, Hai-Yang Zhang, Catharine Allyssa Adams, Claire Elizabeth Willing, Cong Wang, Qiu-Shi Li, Xing-Guo Han, Cheng Gao","doi":"10.1038/s41522-024-00588-4","DOIUrl":"10.1038/s41522-024-00588-4","url":null,"abstract":"<p><p>Horizontal gene transfer (HGT) mediated diversification is a critical force driving evolutionary and ecological processes. However, how HGT might relate to anthropogenic activity such as nitrogen addition, and its subsequent effect on functional diversity and cooccurrence networks remain unknown. Here we approach this knowledge gap by blending bacterial 16S rRNA gene amplicon and shotgun metagenomes from a platform of cessation of nitrogen additions and continuous nitrogen additions. We found that bacterial HGT events, functional genes, and virus diversities increased whereas bacterial taxonomic diversity decreased by nitrogen additions, resulting in a counterintuitive strong negative association between bacterial taxonomic and functional diversities. Nitrogen additions, especially the ceased one, complexified the cooccurrence network by increasing the contribution of vitamin B12 auxotrophic Acidobacteria, indicating cross-feeding. These findings advance our perceptions of the causes and consequences of the diversification process in community ecology.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"128"},"PeriodicalIF":7.8,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11569254/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Klebsiella-phage cocktail to broaden the host range and delay bacteriophage resistance both in vitro and in vivo. 一种克雷伯氏菌噬菌体鸡尾酒,可在体外和体内扩大宿主范围并延缓噬菌体的抗药性。
IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-14 DOI: 10.1038/s41522-024-00603-8
Huanchang Chen, Haifeng Liu, Yanchun Gong, Rhys A Dunstan, Zhexiao Ma, Cui Zhou, Deyi Zhao, Miran Tang, Trevor Lithgow, Tieli Zhou

Bacteriophages (phages), viruses capable of infecting and lysing bacteria, are a promising alternative for treating infections from hypervirulent, antibiotic-resistant pathogens like Klebsiella pneumoniae, though narrow host range and phage resistance remain challenges. In this study, the hypervirulent K. pneumoniae NTUH-K2044 was used to purify phage ΦK2044, while two ΦK2044-resistant strains were used to purify two further phages: ΦKR1, and ΦKR8 from hospital sewage. A detailed characterization showed that ΦK2044 specifically killed KL1 capsule-type K. pneumoniae, while ΦKR1 and ΦKR8 targeted 13 different capsular serotypes. The phage cocktail (ΦK2044 + ΦKR1 + ΦKR8) effectively killed K. pneumoniae in biofilms, pre-treatment biofilm formation, and delayed phage-resistance. The phage cocktail improved 7-day survival in Galleria mellonella and mouse models and showed therapeutic potential in a catheter biofilm model. In summary, this proof-of-principle phage cocktail has a broad host range, including hypervirulent and highly drug-resistant K. pneumoniae, and serves as a promising starting point for optimizing phage therapy.

细菌噬菌体(噬菌体)是一种能够感染和裂解细菌的病毒,是治疗肺炎克雷伯氏菌等高病毒性、耐抗生素病原体感染的一种很有前景的替代方法,但宿主范围狭窄和噬菌体耐药性仍然是一个挑战。在这项研究中,我们利用肺炎克雷伯氏菌 NTUH-K2044 来纯化ΦK2044噬菌体,并利用两株ΦK2044耐药菌株来纯化另外两种噬菌体:KR1和ΦKR8。详细的特性分析表明,ΦK2044 专门杀灭 KL1 胶囊型肺炎双球菌,而 ΦKR1 和 ΦKR8 则针对 13 种不同的胶囊血清型。鸡尾酒噬菌体(ΦK2044 + ΦKR1 + ΦKR8)能有效杀死生物膜中的肺炎克菌,预处理生物膜的形成,并延缓噬菌体的抗药性。鸡尾酒噬菌体提高了小鼠和大鼠模型的 7 天存活率,并在导管生物膜模型中显示出治疗潜力。总之,这种经过原理验证的鸡尾酒噬菌体具有广泛的宿主范围,包括高病毒性和高耐药性肺炎双球菌,是优化噬菌体疗法的一个很有前景的起点。
{"title":"A Klebsiella-phage cocktail to broaden the host range and delay bacteriophage resistance both in vitro and in vivo.","authors":"Huanchang Chen, Haifeng Liu, Yanchun Gong, Rhys A Dunstan, Zhexiao Ma, Cui Zhou, Deyi Zhao, Miran Tang, Trevor Lithgow, Tieli Zhou","doi":"10.1038/s41522-024-00603-8","DOIUrl":"10.1038/s41522-024-00603-8","url":null,"abstract":"<p><p>Bacteriophages (phages), viruses capable of infecting and lysing bacteria, are a promising alternative for treating infections from hypervirulent, antibiotic-resistant pathogens like Klebsiella pneumoniae, though narrow host range and phage resistance remain challenges. In this study, the hypervirulent K. pneumoniae NTUH-K2044 was used to purify phage ΦK2044, while two ΦK2044-resistant strains were used to purify two further phages: ΦKR1, and ΦKR8 from hospital sewage. A detailed characterization showed that ΦK2044 specifically killed KL1 capsule-type K. pneumoniae, while ΦKR1 and ΦKR8 targeted 13 different capsular serotypes. The phage cocktail (ΦK2044 + ΦKR1 + ΦKR8) effectively killed K. pneumoniae in biofilms, pre-treatment biofilm formation, and delayed phage-resistance. The phage cocktail improved 7-day survival in Galleria mellonella and mouse models and showed therapeutic potential in a catheter biofilm model. In summary, this proof-of-principle phage cocktail has a broad host range, including hypervirulent and highly drug-resistant K. pneumoniae, and serves as a promising starting point for optimizing phage therapy.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"127"},"PeriodicalIF":7.8,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564825/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of SARS-CoV-2 infection on respiratory and gut microbiome stability: a metagenomic investigation in long-term-hospitalized COVID-19 patients. SARS-CoV-2 感染对呼吸道和肠道微生物组稳定性的影响:对长期住院的 COVID-19 患者进行的元基因组研究。
IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-13 DOI: 10.1038/s41522-024-00596-4
Zhengtu Li, Jing Chen, Yinhu Li, Linghua Li, Yangqing Zhan, Jiasheng Yang, Huiqin Wu, Shaoqiang Li, Xiaoneng Mo, Xidong Wang, Yiqun Mi, Xi Zhou, Yongming Li, Jun Wang, Yuanxiang Li, Ruilin Sun, Weiping Cai, Feng Ye

During the coronavirus disease 2019 (COVID-19) pandemic, the exploration of microecology has been essential for elucidating the intricacies of infection mechanisms and the recovery of afflicted individuals. To decipher the interplay of microorganisms between the intestinal and respiratory tracts, we collected sputum and throat swabs and feces from COVID-19 patients and explored the mutual migration among intestinal and respiratory microorganisms. Using next-generation sequencing (NGS) technology, we investigated intestinal and respiratory microorganism intermigration in two patients with severe COVID-19 during their hospitalization. Notably, we observed an expedited recovery of microecological equilibrium in one patient harboring Mycobacterium avium. Comparative analyses between 32 healthy controls and 110 COVID-19 patients with different disease severities revealed alterations in predominant microorganisms inhabiting the respiratory and intestinal tracts of COVID-19 patients. Among the alterations, intestinal Bacteroides vulgatus (BV) was identified as a noteworthy microorganism that exhibited marked enrichment in patients with severe COVID-19. BV, when highly abundant, may inhibit the transitional growth of Escherichia coli/Enterococcus, indirectly prevent the overgrowth of salivary streptococci, and maintain lung/intestinal microecology stability. In summary, this study elucidates the bidirectional microbial intermigration between the intestinal and respiratory tracts in COVID-19 patients. These findings are expected to provide new ideas for the treatment and management of COVID-19, underscoring the essential role of microecology in infectious diseases. Nevertheless, a systematic study of the roles of BV in recovery from infection is required to gain a deeper understanding of the mechanisms of microbial migration.

在冠状病毒病 2019(COVID-19)大流行期间,微生态学的探索对于阐明复杂的感染机制和患者的康复至关重要。为了解读肠道和呼吸道微生物之间的相互作用,我们收集了 COVID-19 患者的痰拭子、咽拭子和粪便,并探索了肠道和呼吸道微生物之间的相互迁移。利用新一代测序(NGS)技术,我们研究了两名重症 COVID-19 患者住院期间肠道和呼吸道微生物相互迁移的情况。值得注意的是,我们观察到一名携带分枝杆菌的患者加速恢复了微生态平衡。对 32 名健康对照组和 110 名不同病情严重程度的 COVID-19 患者进行的比较分析显示,COVID-19 患者呼吸道和肠道中栖息的主要微生物发生了变化。在这些变化中,肠道酵母菌(BV)被认为是一种值得注意的微生物,在严重的 COVID-19 患者中表现出明显的富集。当 BV 高度富集时,可抑制大肠杆菌/肠球菌的过渡生长,间接防止唾液链球菌的过度生长,并维持肺/肠微生态的稳定。总之,本研究阐明了 COVID-19 患者肠道和呼吸道之间微生物的双向相互迁移。这些发现有望为 COVID-19 的治疗和管理提供新思路,同时强调微生态在传染病中的重要作用。然而,要想更深入地了解微生物迁移的机制,还需要对 BV 在感染恢复过程中的作用进行系统研究。
{"title":"Impact of SARS-CoV-2 infection on respiratory and gut microbiome stability: a metagenomic investigation in long-term-hospitalized COVID-19 patients.","authors":"Zhengtu Li, Jing Chen, Yinhu Li, Linghua Li, Yangqing Zhan, Jiasheng Yang, Huiqin Wu, Shaoqiang Li, Xiaoneng Mo, Xidong Wang, Yiqun Mi, Xi Zhou, Yongming Li, Jun Wang, Yuanxiang Li, Ruilin Sun, Weiping Cai, Feng Ye","doi":"10.1038/s41522-024-00596-4","DOIUrl":"10.1038/s41522-024-00596-4","url":null,"abstract":"<p><p>During the coronavirus disease 2019 (COVID-19) pandemic, the exploration of microecology has been essential for elucidating the intricacies of infection mechanisms and the recovery of afflicted individuals. To decipher the interplay of microorganisms between the intestinal and respiratory tracts, we collected sputum and throat swabs and feces from COVID-19 patients and explored the mutual migration among intestinal and respiratory microorganisms. Using next-generation sequencing (NGS) technology, we investigated intestinal and respiratory microorganism intermigration in two patients with severe COVID-19 during their hospitalization. Notably, we observed an expedited recovery of microecological equilibrium in one patient harboring Mycobacterium avium. Comparative analyses between 32 healthy controls and 110 COVID-19 patients with different disease severities revealed alterations in predominant microorganisms inhabiting the respiratory and intestinal tracts of COVID-19 patients. Among the alterations, intestinal Bacteroides vulgatus (BV) was identified as a noteworthy microorganism that exhibited marked enrichment in patients with severe COVID-19. BV, when highly abundant, may inhibit the transitional growth of Escherichia coli/Enterococcus, indirectly prevent the overgrowth of salivary streptococci, and maintain lung/intestinal microecology stability. In summary, this study elucidates the bidirectional microbial intermigration between the intestinal and respiratory tracts in COVID-19 patients. These findings are expected to provide new ideas for the treatment and management of COVID-19, underscoring the essential role of microecology in infectious diseases. Nevertheless, a systematic study of the roles of BV in recovery from infection is required to gain a deeper understanding of the mechanisms of microbial migration.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"126"},"PeriodicalIF":7.8,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561083/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Not only for corals: exploring the uptake of beneficial microorganisms for corals by sponges. 不仅仅是珊瑚:探索海绵对珊瑚有益微生物的吸收。
IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-13 DOI: 10.1038/s41522-024-00584-8
Bárbara Ribeiro, Alessandro N Garritano, Inês Raimundo, Nathalia Delgadillo-Ordoñez, Jadranka Nappi, Neus Garcias-Bonet, Helena Villela, Torsten Thomas, Michelle Klautau, Raquel S Peixoto

Microbiome restoration using beneficial microorganisms for corals (BMCs) comprise a promising strategy to help corals cope with anthropogenic stressors. However, there is limited knowledge on the uptake of BMCs by nontarget animals, especially sponges. This study explores whether sponges can acquire BMCs upon direct application and whether inoculations affect sponge health. A 4-week field experiment applying BMCs to Stylissa carteri and Callyspongia crassa assessed three conditions: no inoculation, and BMCs inoculation once and thrice a week. BMC-related strains were naturally present in the seawater and the microbiome of S. carteri. These strains were enriched in response to the inoculation only in the S. carteri microbiome. Microbiomes of both sponges were restructured; sponges were visually healthy and efficiently pumped water at the end of the experiment. These results suggest that sponges can be enriched with BMC-related strains, and that BMC application on nearby corals is unlikely to negatively affect sponge health.

利用珊瑚有益微生物(BMCs)恢复微生物组是帮助珊瑚应对人为压力的一种有前途的策略。然而,人们对非目标动物(尤其是海绵)吸收 BMCs 的情况了解有限。本研究探讨了海绵是否能通过直接施用 BMCs 获得 BMCs,以及接种 BMCs 是否会影响海绵的健康。在为期四周的实地实验中,对 Stylissa carteri 和 Callyspongia crassa 施用 BMC 进行了三种情况的评估:不接种、每周接种一次和三次 BMC。BMC 相关菌株天然存在于 S. carteri 的海水和微生物群中。只有在 S. carteri 微生物组中,这些菌株才会因接种而富集。两种海绵的微生物组都得到了重组;实验结束时,海绵在视觉上是健康的,并能有效地抽水。这些结果表明,海绵可以富集与 BMC 相关的菌株,在附近的珊瑚上施用 BMC 不会对海绵的健康产生负面影响。
{"title":"Not only for corals: exploring the uptake of beneficial microorganisms for corals by sponges.","authors":"Bárbara Ribeiro, Alessandro N Garritano, Inês Raimundo, Nathalia Delgadillo-Ordoñez, Jadranka Nappi, Neus Garcias-Bonet, Helena Villela, Torsten Thomas, Michelle Klautau, Raquel S Peixoto","doi":"10.1038/s41522-024-00584-8","DOIUrl":"10.1038/s41522-024-00584-8","url":null,"abstract":"<p><p>Microbiome restoration using beneficial microorganisms for corals (BMCs) comprise a promising strategy to help corals cope with anthropogenic stressors. However, there is limited knowledge on the uptake of BMCs by nontarget animals, especially sponges. This study explores whether sponges can acquire BMCs upon direct application and whether inoculations affect sponge health. A 4-week field experiment applying BMCs to Stylissa carteri and Callyspongia crassa assessed three conditions: no inoculation, and BMCs inoculation once and thrice a week. BMC-related strains were naturally present in the seawater and the microbiome of S. carteri. These strains were enriched in response to the inoculation only in the S. carteri microbiome. Microbiomes of both sponges were restructured; sponges were visually healthy and efficiently pumped water at the end of the experiment. These results suggest that sponges can be enriched with BMC-related strains, and that BMC application on nearby corals is unlikely to negatively affect sponge health.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"125"},"PeriodicalIF":7.8,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561086/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial-host adhesion dominated by collagen subtypes remodelled by osmotic pressure. 渗透压重塑的胶原亚型主导细菌-宿主粘附。
IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-12 DOI: 10.1038/s41522-024-00600-x
Hongwei Xu, Yuting Feng, Yongtao Du, Yiming Han, Xiaocen Duan, Ying Jiang, Liya Su, Xiaozhi Liu, Siying Qin, Kangmin He, Jianyong Huang

Environmental osmolarity plays a crucial role in regulating the functions and behaviors of both host cells and pathogens. However, it remains unclear whether and how environmental osmotic stimuli modulate bacterial‒host interfacial adhesion. Using single-cell force spectroscopy, we revealed that the interfacial adhesion force depended nonlinearly on the osmotic prestimulation of host cells but not bacteria. Quantitatively, the adhesion force increased dramatically from 25.98 nN under isotonic conditions to 112.45 or 93.10 nN after the host cells were treated with the hypotonic or hypertonic solution. There was a strong correlation between the adhesion force and the number of host cells harboring adherent/internalized bacteria. We further revealed that enhanced overexpression levels of collagen XV and II were responsible for the increases in interfacial adhesion under hypotonic and hypertonic conditions, respectively. This work provides new opportunities for developing host-directed antibacterial strategies related to interfacial adhesion from a mechanobiological perspective.

环境渗透压在调节宿主细胞和病原体的功能和行为方面起着至关重要的作用。然而,环境渗透刺激是否以及如何调节细菌-宿主界面粘附力仍不清楚。我们利用单细胞力谱仪发现,界面粘附力与宿主细胞的渗透预刺激呈非线性关系,但与细菌无关。从数量上看,宿主细胞经低渗或高渗溶液处理后,粘附力从等渗条件下的 25.98 nN 剧增至 112.45 或 93.10 nN。粘附力与宿主细胞中粘附/内化细菌的数量之间存在很强的相关性。我们进一步发现,在低渗和高渗条件下,胶原蛋白 XV 和 II 的过表达水平增强分别是界面粘附力增强的原因。这项工作为从机械生物学角度开发与界面粘附相关的宿主定向抗菌策略提供了新的机遇。
{"title":"Bacterial-host adhesion dominated by collagen subtypes remodelled by osmotic pressure.","authors":"Hongwei Xu, Yuting Feng, Yongtao Du, Yiming Han, Xiaocen Duan, Ying Jiang, Liya Su, Xiaozhi Liu, Siying Qin, Kangmin He, Jianyong Huang","doi":"10.1038/s41522-024-00600-x","DOIUrl":"10.1038/s41522-024-00600-x","url":null,"abstract":"<p><p>Environmental osmolarity plays a crucial role in regulating the functions and behaviors of both host cells and pathogens. However, it remains unclear whether and how environmental osmotic stimuli modulate bacterial‒host interfacial adhesion. Using single-cell force spectroscopy, we revealed that the interfacial adhesion force depended nonlinearly on the osmotic prestimulation of host cells but not bacteria. Quantitatively, the adhesion force increased dramatically from 25.98 nN under isotonic conditions to 112.45 or 93.10 nN after the host cells were treated with the hypotonic or hypertonic solution. There was a strong correlation between the adhesion force and the number of host cells harboring adherent/internalized bacteria. We further revealed that enhanced overexpression levels of collagen XV and II were responsible for the increases in interfacial adhesion under hypotonic and hypertonic conditions, respectively. This work provides new opportunities for developing host-directed antibacterial strategies related to interfacial adhesion from a mechanobiological perspective.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"124"},"PeriodicalIF":7.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557999/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial solutions must be deployed against climate catastrophe. 必须采用微生物解决方案来应对气候灾难。
IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-11 DOI: 10.1038/s41522-024-00591-9
Raquel Peixoto, Christian R Voolstra, Lisa Y Stein, Philip Hugenholtz, Joana Falcao Salles, Shady A Amin, Max Häggblom, Ann Gregory, Thulani P Makhalanyane, Fengping Wang, Nadège Adoukè Agbodjato, Yinzhao Wang, Nianzhi Jiao, Jay T Lennon, Antonio Ventosa, Patrik M Bavoil, Virginia Miller, Jack A Gilbert
{"title":"Microbial solutions must be deployed against climate catastrophe.","authors":"Raquel Peixoto, Christian R Voolstra, Lisa Y Stein, Philip Hugenholtz, Joana Falcao Salles, Shady A Amin, Max Häggblom, Ann Gregory, Thulani P Makhalanyane, Fengping Wang, Nadège Adoukè Agbodjato, Yinzhao Wang, Nianzhi Jiao, Jay T Lennon, Antonio Ventosa, Patrik M Bavoil, Virginia Miller, Jack A Gilbert","doi":"10.1038/s41522-024-00591-9","DOIUrl":"10.1038/s41522-024-00591-9","url":null,"abstract":"","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"122"},"PeriodicalIF":7.8,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554774/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of intestinal testosterone-degrading bacteria and 3/17β-HSD in the pathogenesis of testosterone deficiency-induced hyperlipidemia in males. 肠道睾酮降解菌和 3/17β-HSD 在男性睾酮缺乏引发的高脂血症发病机制中的作用。
IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-09 DOI: 10.1038/s41522-024-00599-1
Jun Tao, Wen Dai, Yongnan Lyu, Hang Liu, Juan Le, Ting Sun, Qian Yao, Zhiming Zhao, Xuejun Jiang, Yan Li

Testosterone deficiency can cause abnormal lipid metabolism in men, leading to hyperlipidemia. We identified the testosterone-degrading bacterium Pseudomonas nitroreducens in the fecal samples of male patients with hyperlipidemia. Gastric administration of P. nitroreducens in mice led to testosterone deficiency and elevated blood lipid levels. Whole-genome sequencing of P. nitroreducens revealed the presence of 3/17β-hydroxysteroid dehydrogenase (3/17β-HSD), a gene responsible for testosterone degradation, which is also associated with hyperlipidemia. Microbiota analysis of fecal samples collected from 158 patients with hyperlipidemia and 151 controls revealed that the relative abundance of P. nitroreducens and 3/17β-HSD in the fecal samples of patients with hyperlipidemia was significantly higher than that in controls. These results suggest that P. nitroreducens and 3/17β-HSD may be related to the onset of testosterone deficiency-induced hyperlipidemia. Therefore, treatments targeted at eradicating testosterone-degrading bacteria are a potential future option for patients with testosterone-induced hyperlipidemia and should thus be studied further.

睾酮缺乏会导致男性脂质代谢异常,从而引发高脂血症。我们在男性高脂血症患者的粪便样本中发现了硝酸假单胞菌(Pseudomonas nitroreducens)能降解睾酮。给小鼠灌胃硝酸假单胞菌会导致睾酮缺乏和血脂水平升高。硝化甘油杆菌的全基因组测序发现了 3/17β-羟基类固醇脱氢酶(3/17β-HSD)的存在,该基因负责睾酮的降解,也与高脂血症有关。对 158 名高脂血症患者和 151 名对照组患者的粪便样本进行微生物群分析后发现,高脂血症患者粪便样本中硝酸还原杆菌和 3/17β-HSD 的相对丰度明显高于对照组。这些结果表明,硝基红球菌和 3/17β-HSD 可能与睾酮缺乏引起的高脂血症的发病有关。因此,针对睾酮诱导的高脂血症患者,根除睾酮降解菌的治疗是未来的一个潜在选择,因此应进一步研究。
{"title":"Role of intestinal testosterone-degrading bacteria and 3/17β-HSD in the pathogenesis of testosterone deficiency-induced hyperlipidemia in males.","authors":"Jun Tao, Wen Dai, Yongnan Lyu, Hang Liu, Juan Le, Ting Sun, Qian Yao, Zhiming Zhao, Xuejun Jiang, Yan Li","doi":"10.1038/s41522-024-00599-1","DOIUrl":"10.1038/s41522-024-00599-1","url":null,"abstract":"<p><p>Testosterone deficiency can cause abnormal lipid metabolism in men, leading to hyperlipidemia. We identified the testosterone-degrading bacterium Pseudomonas nitroreducens in the fecal samples of male patients with hyperlipidemia. Gastric administration of P. nitroreducens in mice led to testosterone deficiency and elevated blood lipid levels. Whole-genome sequencing of P. nitroreducens revealed the presence of 3/17β-hydroxysteroid dehydrogenase (3/17β-HSD), a gene responsible for testosterone degradation, which is also associated with hyperlipidemia. Microbiota analysis of fecal samples collected from 158 patients with hyperlipidemia and 151 controls revealed that the relative abundance of P. nitroreducens and 3/17β-HSD in the fecal samples of patients with hyperlipidemia was significantly higher than that in controls. These results suggest that P. nitroreducens and 3/17β-HSD may be related to the onset of testosterone deficiency-induced hyperlipidemia. Therefore, treatments targeted at eradicating testosterone-degrading bacteria are a potential future option for patients with testosterone-induced hyperlipidemia and should thus be studied further.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"123"},"PeriodicalIF":7.8,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550401/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial diversity and secondary metabolism potential in relation to dark alterations in Paleolithic Lascaux Cave. 旧石器时代拉斯科洞穴中与黑暗变化有关的微生物多样性和次级代谢潜力。
IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-06 DOI: 10.1038/s41522-024-00589-3
Zélia Bontemps, Danis Abrouk, Sita Venier, Pierre Vergne, Serge Michalet, Gilles Comte, Yvan Moënne-Loccoz, Mylène Hugoni

Tourism in Paleolithic caves can cause an imbalance in cave microbiota and lead to cave wall alterations, such as dark zones. However, the mechanisms driving dark zone formation remain unclear. Using shotgun metagenomics in Lascaux Cave's Apse and Passage across two years, we tested metabarcoding-derived functional hypotheses regarding microbial diversity and metabolic potential in dark zones vs unmarked surfaces nearby. Taxonomic and functional metagenomic profiles were consistent across years but divergent between cave locations. Aromatic compound degradation genes were prevalent inside and outside dark zones, as expected from past biocide usage. Dark zones exhibited enhanced pigment biosynthesis potential (melanin and carotenoids) and melanin was evidenced chemically, while unmarked surfaces showed genes for antimicrobials production, suggesting that antibiosis might restrict the development of pigmented microorganisms and dark zone extension. Thus, this work revealed key functional microbial traits associated with dark zone formation, which helps understand cave alteration processes under severe anthropization.

在旧石器时代的洞穴中旅游会造成洞穴微生物群的失衡,并导致洞壁的改变,如暗区。然而,暗区形成的驱动机制仍不清楚。我们使用猎枪元基因组学在拉斯科洞穴的 Apse 和 Passage 进行了为期两年的研究,对暗区与附近无标记表面的微生物多样性和新陈代谢潜力的代谢条形码衍生功能假说进行了测试。不同年份的分类和功能元基因组图谱是一致的,但不同洞穴地点的分类和功能元基因组图谱是不同的。芳香化合物降解基因在暗区内外都很普遍,这与过去使用生物杀灭剂的情况相符。暗区的色素生物合成潜力(黑色素和类胡萝卜素)和黑色素的化学成分都有所提高,而无标记的表面则出现了生产抗菌素的基因,这表明抗生素可能限制了色素微生物的发展和暗区的扩展。因此,这项研究揭示了与暗区形成相关的关键微生物功能特征,有助于了解严重人类化条件下洞穴的改变过程。
{"title":"Microbial diversity and secondary metabolism potential in relation to dark alterations in Paleolithic Lascaux Cave.","authors":"Zélia Bontemps, Danis Abrouk, Sita Venier, Pierre Vergne, Serge Michalet, Gilles Comte, Yvan Moënne-Loccoz, Mylène Hugoni","doi":"10.1038/s41522-024-00589-3","DOIUrl":"10.1038/s41522-024-00589-3","url":null,"abstract":"<p><p>Tourism in Paleolithic caves can cause an imbalance in cave microbiota and lead to cave wall alterations, such as dark zones. However, the mechanisms driving dark zone formation remain unclear. Using shotgun metagenomics in Lascaux Cave's Apse and Passage across two years, we tested metabarcoding-derived functional hypotheses regarding microbial diversity and metabolic potential in dark zones vs unmarked surfaces nearby. Taxonomic and functional metagenomic profiles were consistent across years but divergent between cave locations. Aromatic compound degradation genes were prevalent inside and outside dark zones, as expected from past biocide usage. Dark zones exhibited enhanced pigment biosynthesis potential (melanin and carotenoids) and melanin was evidenced chemically, while unmarked surfaces showed genes for antimicrobials production, suggesting that antibiosis might restrict the development of pigmented microorganisms and dark zone extension. Thus, this work revealed key functional microbial traits associated with dark zone formation, which helps understand cave alteration processes under severe anthropization.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"121"},"PeriodicalIF":7.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541736/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142591321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
npj Biofilms and Microbiomes
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1