{"title":"Modified EBP-bFGF targeting endogenous renal extracellular matrix protects against renal ischemia-reperfusion injury in rats","authors":"Xiaoge Li, Chunying Shi, Runxue Zhou, Xinhui Chen, Qingling Xu, Chunyige Zhao, Mengyao Ma, Xiang Ao, Ying Liu","doi":"10.1002/jbm.a.37730","DOIUrl":null,"url":null,"abstract":"<p>Acute kidney injury (AKI) is a life-threatening disease primarily caused by renal ischemia-reperfusion (I/R) injury, which can result in renal failure. Currently, growth factor therapy is considered a promising and effective approach for AKI treatment. Basic fibroblast growth factor (bFGF), an angiogenic factor with potent activity, efficiently stimulates angiogenesis and facilitates regeneration of renal tissue. However, the unrestricted diffusion of bFGF restricts its clinical application in AKI treatment. Therefore, developing a novel sustained released system for bFGF could enhance its potential in treating AKI. In this study, we genetically engineered a multifunctional recombinant protein by fusing bFGF with a specific peptide (EBP). EBP-bFGF effectively binds to the extracellular matrix in the injured kidney, enabling slow release of bFGF in AKI. Furthermore, following orthotopic injection into I/R rats' ischemic kidneys, EBP-bFGF exhibited stable retention within the tissue. Additionally, EBP-bFGF suppressed apoptosis of renal cells, reduced renal fibrosis, and facilitated recovery of renal function. These findings suggest that EBP-bFGF delivery system represents a promising strategy for treating AKI.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"112 10","pages":"1827-1839"},"PeriodicalIF":3.9000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37730","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Acute kidney injury (AKI) is a life-threatening disease primarily caused by renal ischemia-reperfusion (I/R) injury, which can result in renal failure. Currently, growth factor therapy is considered a promising and effective approach for AKI treatment. Basic fibroblast growth factor (bFGF), an angiogenic factor with potent activity, efficiently stimulates angiogenesis and facilitates regeneration of renal tissue. However, the unrestricted diffusion of bFGF restricts its clinical application in AKI treatment. Therefore, developing a novel sustained released system for bFGF could enhance its potential in treating AKI. In this study, we genetically engineered a multifunctional recombinant protein by fusing bFGF with a specific peptide (EBP). EBP-bFGF effectively binds to the extracellular matrix in the injured kidney, enabling slow release of bFGF in AKI. Furthermore, following orthotopic injection into I/R rats' ischemic kidneys, EBP-bFGF exhibited stable retention within the tissue. Additionally, EBP-bFGF suppressed apoptosis of renal cells, reduced renal fibrosis, and facilitated recovery of renal function. These findings suggest that EBP-bFGF delivery system represents a promising strategy for treating AKI.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.