首页 > 最新文献

Journal of biomedical materials research. Part A最新文献

英文 中文
Soluble Proteins From Conventional and Organic Eggshell Membranes With Different Proteomic Profiles Show Similar In Vitro Biofunctions
IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-18 DOI: 10.1002/jbm.a.37848
Qianli Ma, Lya Piaia, Dagnija Loca, Kristaps Rubenis, Janis Locs, Bernd Thiede, Ólafur Eysteinn Sigurjónsson, Håvard Jostein Haugen

The eggshell membrane (ESM), resembling the extracellular matrix (ECM), acts as a protective barrier against bacterial invasion and offers various biofunctions due to its porous structure and protein-rich composition, such as ovalbumin, ovotransferrin, collagen, soluble protein, and antimicrobial proteins. However, the structure of ESM primarily comprises disulfide bonds and heterochains, which poses a challenge for protein solubilization/extraction. Therefore, the method of dissolving and extracting bioactive protein components from ESM has significant potential value and importance for exploring the reuse of egg waste and environmental protection. In this study, soluble ESM proteins (SEPs) were extracted from conventional (industrial-fed) and organic (free-grounded) using an acidic 3-mercaptopropionic acid (3-MPA) extraction strategy. FTIR was employed to monitor the chemical changes in the ESM, while LC–MS/MS was used to conduct the proteomic analysis. The biocompatibility and effects of SEP cocktails on ECM synthesis were also investigated. The results indicated that the acidic 3-MPA strategy effectively altered the ESM chemical composition, thereby facilitating SEPs extraction. The SEPs from conventional and organic eggs have different protein profiles but with partial overlapping. SEPs from both sources showed similar desirable biosafety profiles and dose-dependent promotion of osteoblastic (ECM) component synthesis, suggesting that different egg sources may contribute to consistent core biological functions of protein products, they may also introduce different functional priorities.

{"title":"Soluble Proteins From Conventional and Organic Eggshell Membranes With Different Proteomic Profiles Show Similar In Vitro Biofunctions","authors":"Qianli Ma,&nbsp;Lya Piaia,&nbsp;Dagnija Loca,&nbsp;Kristaps Rubenis,&nbsp;Janis Locs,&nbsp;Bernd Thiede,&nbsp;Ólafur Eysteinn Sigurjónsson,&nbsp;Håvard Jostein Haugen","doi":"10.1002/jbm.a.37848","DOIUrl":"10.1002/jbm.a.37848","url":null,"abstract":"<p>The eggshell membrane (ESM), resembling the extracellular matrix (ECM), acts as a protective barrier against bacterial invasion and offers various biofunctions due to its porous structure and protein-rich composition, such as ovalbumin, ovotransferrin, collagen, soluble protein, and antimicrobial proteins. However, the structure of ESM primarily comprises disulfide bonds and heterochains, which poses a challenge for protein solubilization/extraction. Therefore, the method of dissolving and extracting bioactive protein components from ESM has significant potential value and importance for exploring the reuse of egg waste and environmental protection. In this study, soluble ESM proteins (SEPs) were extracted from conventional (industrial-fed) and organic (free-grounded) using an acidic 3-mercaptopropionic acid (3-MPA) extraction strategy. FTIR was employed to monitor the chemical changes in the ESM, while LC–MS/MS was used to conduct the proteomic analysis. The biocompatibility and effects of SEP cocktails on ECM synthesis were also investigated. The results indicated that the acidic 3-MPA strategy effectively altered the ESM chemical composition, thereby facilitating SEPs extraction. The SEPs from conventional and organic eggs have different protein profiles but with partial overlapping. SEPs from both sources showed similar desirable biosafety profiles and dose-dependent promotion of osteoblastic (ECM) component synthesis, suggesting that different egg sources may contribute to consistent core biological functions of protein products, they may also introduce different functional priorities.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37848","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142848463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dextran Sulfate-Modified and pH-Responsive Nanoprobes for Magnetic Resonance/Fluorescence Dual-Modality Imaging of Vulnerable Plaques
IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-13 DOI: 10.1002/jbm.a.37847
Jianing Cheng, Liguo Hao, Xiaorong Zhu, Ruifan Ma, Silong Li, Qiangqiang Yin, Dongxu Wang, Haifeng Hu, Tianyu Zhang, Zheng Li, Houyi Cong, Xiaoyang Zheng, Jun He, Yuguang Wang

Triggered by the vulnerability to atherosclerotic plaques, cardiovascular diseases (CVDs) have become a main reason for high mortality worldwide. Thus, there is an urgent need to develop functional molecular imaging modalities to improve the detection rate of vulnerable plaques. In this study, polyethyleneimine (PEI) was coated on the surface of mesoporous silica nanoprobes (MSN) loaded with Gd2O3 (MSN@Gd2O3), followed by coupling the fluorescent dye carboxylated heptamethine cyanine (IR808), and then the dextran sulfate (DS) was modified on the surface of MSN@Gd2O3@IR808 by electrostatic adsorption, to construct a targeted and pH-responsive magnetic resonance (MR)/near-infrared fluorescence imaging (NIRF) dual-modal nanoprobe (MSN@Gd2O3@IR808@DS nanoparticles). The nanoprobe presented a more concentrated distribution of spherical shapes in transmission electron microscopy. In vitro simulated vulnerable plaque microenvironment (pH = 5.5) presented significant T1-weighted imaging (T1WI) signal and longitudinal relaxation in the nanoprobe. Immunofluorescence staining and cellular uptake assays showed that MSN@Gd2O3@IR808@DS nanoparticles have the ability to specially bind to scavenger receptors A (SR-A). In vascular endothelium from the high-fat diet (HFD) New Zealand White rabbits, MSN@Gd2O3@IR808@DS nanoparticles can exhibit specific contrast-enhanced signals by MR/NIRF dual-modal imaging. In addition, cytotoxicity assays and hematoxylin and eosin (H&E) staining results demonstrated that MSN@Gd2O3@IR808@DS nanoparticles have good biocompatibility. Hence, this multifunctional MR/NIRF bimodal nanoprobe provides new experimental and technological ideas for the accurate diagnosis of vulnerable plaques.

{"title":"Dextran Sulfate-Modified and pH-Responsive Nanoprobes for Magnetic Resonance/Fluorescence Dual-Modality Imaging of Vulnerable Plaques","authors":"Jianing Cheng,&nbsp;Liguo Hao,&nbsp;Xiaorong Zhu,&nbsp;Ruifan Ma,&nbsp;Silong Li,&nbsp;Qiangqiang Yin,&nbsp;Dongxu Wang,&nbsp;Haifeng Hu,&nbsp;Tianyu Zhang,&nbsp;Zheng Li,&nbsp;Houyi Cong,&nbsp;Xiaoyang Zheng,&nbsp;Jun He,&nbsp;Yuguang Wang","doi":"10.1002/jbm.a.37847","DOIUrl":"10.1002/jbm.a.37847","url":null,"abstract":"<div>\u0000 \u0000 <p>Triggered by the vulnerability to atherosclerotic plaques, cardiovascular diseases (CVDs) have become a main reason for high mortality worldwide. Thus, there is an urgent need to develop functional molecular imaging modalities to improve the detection rate of vulnerable plaques. In this study, polyethyleneimine (PEI) was coated on the surface of mesoporous silica nanoprobes (MSN) loaded with Gd<sub>2</sub>O<sub>3</sub> (MSN@Gd<sub>2</sub>O<sub>3</sub>), followed by coupling the fluorescent dye carboxylated heptamethine cyanine (IR808), and then the dextran sulfate (DS) was modified on the surface of MSN@Gd<sub>2</sub>O<sub>3</sub>@IR808 by electrostatic adsorption, to construct a targeted and pH-responsive magnetic resonance (MR)/near-infrared fluorescence imaging (NIRF) dual-modal nanoprobe (MSN@Gd<sub>2</sub>O<sub>3</sub>@IR808@DS nanoparticles). The nanoprobe presented a more concentrated distribution of spherical shapes in transmission electron microscopy. In vitro simulated vulnerable plaque microenvironment (pH = 5.5) presented significant T<sub>1</sub>-weighted imaging (T<sub>1</sub>WI) signal and longitudinal relaxation in the nanoprobe. Immunofluorescence staining and cellular uptake assays showed that MSN@Gd<sub>2</sub>O<sub>3</sub>@IR808@DS nanoparticles have the ability to specially bind to scavenger receptors A (SR-A). In vascular endothelium from the high-fat diet (HFD) New Zealand White rabbits, MSN@Gd<sub>2</sub>O<sub>3</sub>@IR808@DS nanoparticles can exhibit specific contrast-enhanced signals by MR/NIRF dual-modal imaging. In addition, cytotoxicity assays and hematoxylin and eosin (H&amp;E) staining results demonstrated that MSN@Gd<sub>2</sub>O<sub>3</sub>@IR808@DS nanoparticles have good biocompatibility. Hence, this multifunctional MR/NIRF bimodal nanoprobe provides new experimental and technological ideas for the accurate diagnosis of vulnerable plaques.</p>\u0000 </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Injectable Nano-Micron AKBA Delivery Platform for Treatment of Tendinopathy in a Rat Model
IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-13 DOI: 10.1002/jbm.a.37844
Qibin Han, Yinhua Qian, Lang Bai, Jing Zhou, Yuefeng Hao, Dan Hu, Zhouzhou Zhang, Xing Yang

Tendinopathy is a disorder characterized by pain and reduced function due to a series of changes in injured or diseased tendons. Inflammation and collagen degeneration are key contributors to the onset and chronic nature of tendinopathy. Acetyl-11-keto-β-boswellic acid (AKBA) is an effective anti-inflammatory agent widely used in chronic inflammatory disorders and holds potential for tendinopathy treatment; however, its therapeutic efficacy is limited by poor aqueous solubility. Here, we fabricated AKBA-encapsulated cationic liposome-gelatin methacrylamide (GelMA) microspheres (GM-Lipo-AKBA) using thin-film hydration and microfluidic technology for drug delivery therapy. GM-Lipo-AKBA exhibited high encapsulation efficiency, extended AKBA release for over 4 weeks, and prolonged degradation. In vitro and in vivo experiments demonstrated its effectiveness in improving inflammation and ECM remodeling in tendinopathy. In summary, the injectable nano-micron drug delivery platform provides a promising strategy for the sustained and localized delivery of AKBA for tendinopathy treatment.

肌腱病是一种因受伤或患病肌腱发生一系列变化而导致疼痛和功能减退的疾病。炎症和胶原蛋白变性是导致肌腱病发病和慢性化的主要原因。乙酰基-11-酮-β-乳香酸(AKBA)是一种有效的抗炎药物,被广泛用于慢性炎症性疾病的治疗,并具有治疗肌腱病的潜力;然而,由于其水溶性较差,其疗效受到了限制。在此,我们利用薄膜水合和微流控技术制备了阳离子脂质体-明胶甲基丙烯酰胺(Gelatin methacrylamide,GelMA)包封微球(GM-Lipo-AKBA),用于给药治疗。GM-Lipo-AKBA 具有封装效率高、AKBA 释放时间长达 4 周以上、降解时间长等特点。体外和体内实验证明,它能有效改善肌腱病的炎症和 ECM 重塑。总之,这种可注射的纳米微米给药平台为 AKBA 持续、局部给药治疗肌腱病提供了一种前景广阔的策略。
{"title":"Injectable Nano-Micron AKBA Delivery Platform for Treatment of Tendinopathy in a Rat Model","authors":"Qibin Han,&nbsp;Yinhua Qian,&nbsp;Lang Bai,&nbsp;Jing Zhou,&nbsp;Yuefeng Hao,&nbsp;Dan Hu,&nbsp;Zhouzhou Zhang,&nbsp;Xing Yang","doi":"10.1002/jbm.a.37844","DOIUrl":"10.1002/jbm.a.37844","url":null,"abstract":"<div>\u0000 \u0000 <p>Tendinopathy is a disorder characterized by pain and reduced function due to a series of changes in injured or diseased tendons. Inflammation and collagen degeneration are key contributors to the onset and chronic nature of tendinopathy. Acetyl-11-keto-β-boswellic acid (AKBA) is an effective anti-inflammatory agent widely used in chronic inflammatory disorders and holds potential for tendinopathy treatment; however, its therapeutic efficacy is limited by poor aqueous solubility. Here, we fabricated AKBA-encapsulated cationic liposome-gelatin methacrylamide (GelMA) microspheres (GM-Lipo-AKBA) using thin-film hydration and microfluidic technology for drug delivery therapy. GM-Lipo-AKBA exhibited high encapsulation efficiency, extended AKBA release for over 4 weeks, and prolonged degradation. In vitro and in vivo experiments demonstrated its effectiveness in improving inflammation and ECM remodeling in tendinopathy. In summary, the injectable nano-micron drug delivery platform provides a promising strategy for the sustained and localized delivery of AKBA for tendinopathy treatment.</p>\u0000 </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Gamma Irradiation on Structural, Chemical, Bioactivity and Biocompatibility Characteristics of Bioactive Glass–Polymer Composite Film
IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-13 DOI: 10.1002/jbm.a.37842
Mamun Khan Sujon, Siti Fatimah Samsurrijal, Ruzalina Baharin, Naurah Mat Isa, Muhammad Azrul Zabidi, Siti Noor Fazliah Mohd Noor

Gamma irradiation is an effective technique for biocomposite films intended for application in tissue engineering (TE) to ensure sterility and patient safety prior to clinical applications. This study proposed a biocomposite film composed of natural polymer chitosan (CS) and synthetic polymer poly-Ɛ-caprolactone (PCL) reinforced with sol–gel-derived bioactive glass (BG) for potential application in TE. The BG/PCL/CS biocomposite film was sterilized using 25 kGy gamma rays, and subsequent changes in its characteristics were analyzed through mechanical and physical assessment, bioactivity evaluation via immersion in simulated body fluid (SBF) and biocompatibility examination using human primary dermal fibroblasts (HPDFs). Results indicated a homogeneous distribution of BG particles within the BG/PCL/CS polymer matrix which enhanced bioactivity, and the polymer blend provide a structurally stable film. Gamma irradiation induced an increase in the film's surface roughness due to photo-oxidative degradation; however, this did not adversely affect the integrity of glass particles and polymer chains. In vitro assessments demonstrated hydroxyapatite formation on the film's surface, suggesting bioactivity. Biocompatibility testing confirmed enhanced cell adhesion and proliferation. These multifunctional properties highlight the potential of the fabricated BG/PCL/CS biocomposite film for TE and regenerative medicine applications.

伽马辐照是应用于组织工程(TE)的生物复合膜的有效技术,可确保临床应用前的无菌性和患者安全。本研究提出了一种由天然聚合物壳聚糖(CS)和合成聚合物聚己内酯(PCL)以及溶胶凝胶衍生生物活性玻璃(BG)增强的生物复合膜,有望应用于组织工程(TE)。使用 25 kGy 伽马射线对 BG/PCL/CS 生物复合薄膜进行灭菌,并通过机械和物理评估、浸泡在模拟体液 (SBF) 中进行生物活性评估以及使用人类原生真皮成纤维细胞 (HPDF) 进行生物相容性检查,分析其随后的特性变化。结果表明,BG 颗粒在 BG/PCL/CS 聚合物基质中分布均匀,增强了生物活性,而且聚合物混合物提供了结构稳定的薄膜。由于光氧化降解,伽马射线照射导致薄膜表面粗糙度增加;但这并没有对玻璃微粒和聚合物链的完整性产生不利影响。体外评估显示,薄膜表面形成了羟基磷灰石,这表明薄膜具有生物活性。生物相容性测试证实,细胞粘附和增殖能力增强。这些多功能特性凸显了所制造的 BG/PCL/CS 生物复合薄膜在 TE 和再生医学应用方面的潜力。
{"title":"Effects of Gamma Irradiation on Structural, Chemical, Bioactivity and Biocompatibility Characteristics of Bioactive Glass–Polymer Composite Film","authors":"Mamun Khan Sujon,&nbsp;Siti Fatimah Samsurrijal,&nbsp;Ruzalina Baharin,&nbsp;Naurah Mat Isa,&nbsp;Muhammad Azrul Zabidi,&nbsp;Siti Noor Fazliah Mohd Noor","doi":"10.1002/jbm.a.37842","DOIUrl":"10.1002/jbm.a.37842","url":null,"abstract":"<div>\u0000 \u0000 <p>Gamma irradiation is an effective technique for biocomposite films intended for application in tissue engineering (TE) to ensure sterility and patient safety prior to clinical applications. This study proposed a biocomposite film composed of natural polymer chitosan (CS) and synthetic polymer poly-Ɛ-caprolactone (PCL) reinforced with sol–gel-derived bioactive glass (BG) for potential application in TE. The BG/PCL/CS biocomposite film was sterilized using 25 kGy gamma rays, and subsequent changes in its characteristics were analyzed through mechanical and physical assessment, bioactivity evaluation via immersion in simulated body fluid (SBF) and biocompatibility examination using human primary dermal fibroblasts (HPDFs). Results indicated a homogeneous distribution of BG particles within the BG/PCL/CS polymer matrix which enhanced bioactivity, and the polymer blend provide a structurally stable film. Gamma irradiation induced an increase in the film's surface roughness due to photo-oxidative degradation; however, this did not adversely affect the integrity of glass particles and polymer chains. In vitro assessments demonstrated hydroxyapatite formation on the film's surface, suggesting bioactivity. Biocompatibility testing confirmed enhanced cell adhesion and proliferation. These multifunctional properties highlight the potential of the fabricated BG/PCL/CS biocomposite film for TE and regenerative medicine applications.</p>\u0000 </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning Surface Chemistry Impacts on Cardiac Endothelial and Smooth Muscle Cell Development
IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-13 DOI: 10.1002/jbm.a.37846
Yasemin Acar, Amy Managh, Eric James Hill, Paul Roach

Cardiovascular diseases (CVDs) are the leading causes of death worldwide, with approx. Twenty million deaths in 2021. Cardiovascular implants are among the most used biomaterials in the clinical world. However, poor endothelialisation and rapid thrombosis remains a challenge. Simple chemical surface modification techniques can be used to steer biological interactions without affecting the bioimplants' overall bulk characteristics such as radiopacity and flexibility. Although silanes are well studied for protein and cell interactions, the methodical investigation of cardiac endothelial cell (EC) alongside smooth muscle cell (SMC) to mimic natural arterial environments has been limited. In this study, these cells have been investigated on surfaces functionalized with methyl, amine, thiol, methacrylate, and fluorine organosilane groups. Cardiac EC and SMC growth was investigated with metabolic activity, time lapse imaging, and immunofluorescent staining techniques. The results demonstrated that the surfaces tested are able to selectively regulate the viability and growth of the cells. Aminosilane modified surfaces displayed 2-fold higher metabolic activity with HUVEC and 2-fold less metabolic activity with HCASMC cell lines, compared to tissue culture plastic controls. The amino-modification outperformed all other chemistries tested in terms of ability to promote the proliferation of ECs, while importantly reducing the activity of SMCs. This report demonstrates that aminosilane modified surfaces have the potential to be utilized in novel cardiovascular implants, which could improve biological integration in the short and possibly longer-term. The findings of this study suggest that specific chemical modifications of the surface can enhance endothelial cell activity while minimizing the proliferation of smooth muscle cells, which are often associated with thrombosis. This highlights the potential of carefully engineered surface chemistries to improve the clinical outcomes of cardiovascular implants.

心血管疾病(CVD)是导致全球死亡的主要原因,2021 年将有约 2000 万人死于此病。心血管植入物是临床上使用最多的生物材料之一。然而,内皮化不良和快速血栓形成仍然是一个挑战。简单的化学表面改性技术可用于引导生物相互作用,而不影响生物植入物的整体体积特性,如辐射性和柔韧性。虽然硅烷对蛋白质和细胞的相互作用研究得很透彻,但对心脏内皮细胞(EC)和平滑肌细胞(SMC)模拟自然动脉环境的方法研究还很有限。在这项研究中,研究人员在具有甲基、胺、硫醇、甲基丙烯酸酯和氟有机硅烷基团功能化的表面上对这些细胞进行了研究。通过新陈代谢活动、延时成像和免疫荧光染色技术对心脏 EC 和 SMC 的生长进行了研究。结果表明,所测试的表面能够选择性地调节细胞的活力和生长。与组织培养塑料对照组相比,氨基硅烷修饰表面对 HUVEC 的代谢活性高 2 倍,对 HCASMC 细胞株的代谢活性低 2 倍。就促进 EC 增殖的能力而言,氨基修饰的效果优于所有其他测试过的化学物质,但重要的是,它降低了 SMC 的活性。本报告表明,氨基硅烷改性表面有可能用于新型心血管植入物,从而在短期甚至长期内改善生物整合。这项研究的结果表明,对表面进行特定的化学修饰可以增强内皮细胞的活性,同时最大限度地减少平滑肌细胞的增殖,而平滑肌细胞的增殖往往与血栓形成有关。这凸显了精心设计的表面化学物质在改善心血管植入物临床效果方面的潜力。
{"title":"Tuning Surface Chemistry Impacts on Cardiac Endothelial and Smooth Muscle Cell Development","authors":"Yasemin Acar,&nbsp;Amy Managh,&nbsp;Eric James Hill,&nbsp;Paul Roach","doi":"10.1002/jbm.a.37846","DOIUrl":"10.1002/jbm.a.37846","url":null,"abstract":"<p>Cardiovascular diseases (CVDs) are the leading causes of death worldwide, with approx. Twenty million deaths in 2021. Cardiovascular implants are among the most used biomaterials in the clinical world. However, poor endothelialisation and rapid thrombosis remains a challenge. Simple chemical surface modification techniques can be used to steer biological interactions without affecting the bioimplants' overall bulk characteristics such as radiopacity and flexibility. Although silanes are well studied for protein and cell interactions, the methodical investigation of cardiac endothelial cell (EC) alongside smooth muscle cell (SMC) to mimic natural arterial environments has been limited. In this study, these cells have been investigated on surfaces functionalized with methyl, amine, thiol, methacrylate, and fluorine organosilane groups. Cardiac EC and SMC growth was investigated with metabolic activity, time lapse imaging, and immunofluorescent staining techniques. The results demonstrated that the surfaces tested are able to selectively regulate the viability and growth of the cells. Aminosilane modified surfaces displayed 2-fold higher metabolic activity with HUVEC and 2-fold less metabolic activity with HCASMC cell lines, compared to tissue culture plastic controls. The amino-modification outperformed all other chemistries tested in terms of ability to promote the proliferation of ECs, while importantly reducing the activity of SMCs. This report demonstrates that aminosilane modified surfaces have the potential to be utilized in novel cardiovascular implants, which could improve biological integration in the short and possibly longer-term. The findings of this study suggest that specific chemical modifications of the surface can enhance endothelial cell activity while minimizing the proliferation of smooth muscle cells, which are often associated with thrombosis. This highlights the potential of carefully engineered surface chemistries to improve the clinical outcomes of cardiovascular implants.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37846","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Vitro Osteogenic Response to Copper-Doped Eggshell-Derived Hyroxyapatite With Macrophage Supplements
IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-11-29 DOI: 10.1002/jbm.a.37838
Tejal V. Patil, Dinesh K. Patel, Ki-Taek Lim

The high bioactivity and biocompatibility of hydroxyapatite (HAP) make it a useful bone graft material for bone tissue engineering. However, the development superior osteoconductive and osteoinductive materials for bone regeneration remains a challenge. To overcome these constraints, Cu-doped hydroxyapatite (HAP(Cu)) from waste eggshells has been produced for bone tissue engineering. The materials produced were characterized using Fourier transform infrared spectroscopy, x-ray diffraction, and photoelectron spectroscopy. The scanning microscopy images revealed that the developed HAP was a rod-like crystalline structure with a typical 80–150 nm diameter. Energy-dispersive x-ray spectroscopy showed that the generated HAP was mostly composed of calcium, oxygen, and phosphorus. The Ca/P molar ratios in eggshell-derived and copper-doped HAP were 1.61 and 1.67, respectively, similar to the commercially available HAP ratio (1.67). The WST-8 assay was used to assess the biocompatibility of HAPs with hBMSCs. HAP(Cu) in the media significantly altered the cytotoxicity of biocompatible HAP(Cu). The osteogenic potential of HAP(Cu) was demonstrated by greater mineralization than that of pure HAP or the control. HAP(Cu) showed higher osteogenic gene expression than pure HAP and the control, indicating its stronger osteogenic potential. Furthermore, we assessed the effects of sample-treated macrophage-derived conditioned medium (CM) on hBMSCs' osteogenesis. CM-treated HAP(Cu) demonstrated a significantly higher osteogenic potential vis-à-vis pure HAP(Cu). These findings revealed that HAP(Cu) with CM significantly improved osteogenesis in hBMSCs and can be explored as a bone graft in bone tissue engineering.

{"title":"In Vitro Osteogenic Response to Copper-Doped Eggshell-Derived Hyroxyapatite With Macrophage Supplements","authors":"Tejal V. Patil,&nbsp;Dinesh K. Patel,&nbsp;Ki-Taek Lim","doi":"10.1002/jbm.a.37838","DOIUrl":"https://doi.org/10.1002/jbm.a.37838","url":null,"abstract":"<div>\u0000 \u0000 <p>The high bioactivity and biocompatibility of hydroxyapatite (HAP) make it a useful bone graft material for bone tissue engineering. However, the development superior osteoconductive and osteoinductive materials for bone regeneration remains a challenge. To overcome these constraints, Cu-doped hydroxyapatite (HAP(Cu)) from waste eggshells has been produced for bone tissue engineering. The materials produced were characterized using Fourier transform infrared spectroscopy, x-ray diffraction, and photoelectron spectroscopy. The scanning microscopy images revealed that the developed HAP was a rod-like crystalline structure with a typical 80–150 nm diameter. Energy-dispersive x-ray spectroscopy showed that the generated HAP was mostly composed of calcium, oxygen, and phosphorus. The Ca/P molar ratios in eggshell-derived and copper-doped HAP were 1.61 and 1.67, respectively, similar to the commercially available HAP ratio (1.67). The WST-8 assay was used to assess the biocompatibility of HAPs with hBMSCs. HAP(Cu) in the media significantly altered the cytotoxicity of biocompatible HAP(Cu). The osteogenic potential of HAP(Cu) was demonstrated by greater mineralization than that of pure HAP or the control. HAP(Cu) showed higher osteogenic gene expression than pure HAP and the control, indicating its stronger osteogenic potential. Furthermore, we assessed the effects of sample-treated macrophage-derived conditioned medium (CM) on hBMSCs' osteogenesis. CM-treated HAP(Cu) demonstrated a significantly higher osteogenic potential vis-à-vis pure HAP(Cu). These findings revealed that HAP(Cu) with CM significantly improved osteogenesis in hBMSCs and can be explored as a bone graft in bone tissue engineering.</p>\u0000 </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Albumin/Hyaluronic Acid Nanoparticle-Laden Contact Lenses for the Ocular Delivery of 5-Fluorouracil
IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-11-29 DOI: 10.1002/jbm.a.37839
Sara F. M. Senra, Sérgio R. S. Veloso, Madalena Lira, Elisabete M. S. Castanheira

Nanoparticle-laden contact lenses are a formidable strategy for ocular drug delivery. However, incorporating nanoparticles to achieve sustained drug release without affecting the contact lenses' properties remains a challenging task. In this work, daily and monthly replacement silicone-hydrogel contact lenses laden with bovine serum albumin/hyaluronic acid (BSA/HA) nanoparticles are presented. These nanoparticle-laden contact lenses enable the sustained release of 5-fluorouracil (5-FU) in mimetic physiological conditions. The nanoparticle-laden contact lenses display properties similar to neat contact lenses, including refractive index, water content, UV/visible transmittance and chemical structure. Noteworthy attributes include the BSA/HA nanoparticles' low polydispersity, negative surface charge and a hydrodynamic size of ~210 nm, as well as the high nanoparticle loading efficiency (~ 30%) of the contact lenses. Thereby, the BSA/HA nanoparticles are a promising strategy for developing nanoparticle-laden contact lenses for therapeutic applications, namely for sustained drug delivery.

{"title":"Albumin/Hyaluronic Acid Nanoparticle-Laden Contact Lenses for the Ocular Delivery of 5-Fluorouracil","authors":"Sara F. M. Senra,&nbsp;Sérgio R. S. Veloso,&nbsp;Madalena Lira,&nbsp;Elisabete M. S. Castanheira","doi":"10.1002/jbm.a.37839","DOIUrl":"https://doi.org/10.1002/jbm.a.37839","url":null,"abstract":"<div>\u0000 \u0000 <p>Nanoparticle-laden contact lenses are a formidable strategy for ocular drug delivery. However, incorporating nanoparticles to achieve sustained drug release without affecting the contact lenses' properties remains a challenging task. In this work, daily and monthly replacement silicone-hydrogel contact lenses laden with bovine serum albumin/hyaluronic acid (BSA/HA) nanoparticles are presented. These nanoparticle-laden contact lenses enable the sustained release of 5-fluorouracil (5-FU) in mimetic physiological conditions. The nanoparticle-laden contact lenses display properties similar to neat contact lenses, including refractive index, water content, UV/visible transmittance and chemical structure. Noteworthy attributes include the BSA/HA nanoparticles' low polydispersity, negative surface charge and a hydrodynamic size of ~210 nm, as well as the high nanoparticle loading efficiency (~ 30%) of the contact lenses. Thereby, the BSA/HA nanoparticles are a promising strategy for developing nanoparticle-laden contact lenses for therapeutic applications, namely for sustained drug delivery.</p>\u0000 </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphene Oxide Functionalized GelMA Platform Loaded With BFP-1 for Osteogenic Differentiation of BMSCs
IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-11-29 DOI: 10.1002/jbm.a.37829
Taowen Guo, Shifan Lin, Le Zou, Guoliang Zhang, Jiaqi Long, Zhiping Zhang, Shan Wang

Spinal fusion is the ultimate choice for most patients with severe disc degeneration, and bone tissue engineering offers novel strategies to improve intervertebral bone growth and fusion. In this study, we utilized graphene oxide (GO) and methacrylated gelatin (GelMA) to prepare GelMA/GO composite hydrogel scaffolds with different GO concentrations. By characterizing the various properties of the scaffolds, it was learned that the composite scaffold containing 1.2 mg/mL GO possessed the best overall performance, and we used it for subsequent experiments. GelMA/GO composite scaffolds containing different bone-forming peptide-1 (BFP-1) concentrations were constructed and cocultured with bone marrow mesenchymal stem cells (BMSCs), and the results showed that GelMA/GO composite scaffolds containing 0.4 mg/mL BFP-1 induced the cells to produce more ALP and mineralized matrix. The above scaffold was further investigated as a GelMA/GO@BFP-1 composite, and the results showed that it promoted the production of ALP and mineralized matrix in BMSCs, and significantly enhanced the expression of osteogenesis-related genes (ALP, Runx-2, OCN, OPN) and proteins (Runx-2, OCN). It suggests that the GelMA/GO@BFP-1 complex promotes osteogenic differentiation of BMSCs and has the potential tobe used as a bone implant for improving intervertebral bone fusion.

{"title":"Graphene Oxide Functionalized GelMA Platform Loaded With BFP-1 for Osteogenic Differentiation of BMSCs","authors":"Taowen Guo,&nbsp;Shifan Lin,&nbsp;Le Zou,&nbsp;Guoliang Zhang,&nbsp;Jiaqi Long,&nbsp;Zhiping Zhang,&nbsp;Shan Wang","doi":"10.1002/jbm.a.37829","DOIUrl":"https://doi.org/10.1002/jbm.a.37829","url":null,"abstract":"<p>Spinal fusion is the ultimate choice for most patients with severe disc degeneration, and bone tissue engineering offers novel strategies to improve intervertebral bone growth and fusion. In this study, we utilized graphene oxide (GO) and methacrylated gelatin (GelMA) to prepare GelMA/GO composite hydrogel scaffolds with different GO concentrations. By characterizing the various properties of the scaffolds, it was learned that the composite scaffold containing 1.2 mg/mL GO possessed the best overall performance, and we used it for subsequent experiments. GelMA/GO composite scaffolds containing different bone-forming peptide-1 (BFP-1) concentrations were constructed and cocultured with bone marrow mesenchymal stem cells (BMSCs), and the results showed that GelMA/GO composite scaffolds containing 0.4 mg/mL BFP-1 induced the cells to produce more ALP and mineralized matrix. The above scaffold was further investigated as a GelMA/GO@BFP-1 composite, and the results showed that it promoted the production of ALP and mineralized matrix in BMSCs, and significantly enhanced the expression of osteogenesis-related genes (ALP, Runx-2, OCN, OPN) and proteins (Runx-2, OCN). It suggests that the GelMA/GO@BFP-1 complex promotes osteogenic differentiation of BMSCs and has the potential tobe used as a bone implant for improving intervertebral bone fusion.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37829","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of PEG-Based Hydrogels as Soft Ionic Conductors 设计作为软离子导体的 PEG 基水凝胶。
IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-11-23 DOI: 10.1002/jbm.a.37840
Gabriel J. Rodriguez-Rivera, Fei Xu, Madeline Laude, Vani Shah, Abbey Nkansah, Derek Bashe, Ziyang Lan, Malgorzata Chwatko, Elizabeth Cosgriff-Hernandez

Conductive hydrogels have gained interest in biomedical applications and soft electronics. To tackle the challenge of ionic hydrogels falling short of desired mechanical properties in previous studies, our investigation aimed to understand the pivotal structural factors that impact the conductivity and mechanical behavior of polyethylene glycol (PEG)-based hydrogels with ionic conductivity. Polyether urethane diacrylamide (PEUDAm), a functionalized long-chain macromer based on PEG, was used to synthesize hydrogels with ionic conductivity conferred by incorporating ions into the liquid phase of the hydrogel. The impact of salt concentration, water content, temperature, and gel formation on both mechanical properties and conductivity was characterized to establish parameters for tuning hydrogel properties. To further expand the range of conductivity available in these ionic hydrogels, 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) was incorporated as a single copolymer network or double network configuration. As expected, conductivity in these ionic gels was primarily driven by ion diffusivity and charge density, which were dependent on hydrogel network formation and swelling. Copolymer network structure had minimal effect on the conductivity, which was primarily driven by counter-ion equilibrium; however, the mechanical properties and equilibrium swelling were strongly dependent on network structure. The structure–property relationships elucidated here enable the rationale design of this new double network hydrogel to achieve target properties for a broad range of biomedical applications.

导电水凝胶在生物医学应用和软电子学领域备受关注。为了解决以往研究中离子水凝胶无法达到理想机械性能的难题,我们的研究旨在了解影响具有离子导电性的聚乙二醇(PEG)基水凝胶的导电性和机械行为的关键结构因素。聚醚聚氨酯二丙烯酰胺(PEUDAm)是一种基于 PEG 的官能化长链大单体,我们用它来合成具有离子导电性的水凝胶,方法是在水凝胶的液相中加入离子。研究表征了盐浓度、水含量、温度和凝胶形成对机械性能和电导率的影响,从而确定了调整水凝胶性能的参数。为了进一步扩大这些离子水凝胶的电导率范围,2-丙烯酰胺基-2-甲基-1-丙磺酸(AMPS)以单共聚物网络或双网络配置的形式加入其中。不出所料,这些离子凝胶的导电性主要受离子扩散率和电荷密度的影响,而离子扩散率和电荷密度取决于水凝胶网络的形成和溶胀。共聚物网络结构对电导率的影响很小,电导率主要由反离子平衡驱动;然而,机械性能和平衡溶胀在很大程度上取决于网络结构。本文所阐明的结构-性能关系有助于合理设计这种新型双网络水凝胶,使其在广泛的生物医学应用中实现目标性能。
{"title":"Design of PEG-Based Hydrogels as Soft Ionic Conductors","authors":"Gabriel J. Rodriguez-Rivera,&nbsp;Fei Xu,&nbsp;Madeline Laude,&nbsp;Vani Shah,&nbsp;Abbey Nkansah,&nbsp;Derek Bashe,&nbsp;Ziyang Lan,&nbsp;Malgorzata Chwatko,&nbsp;Elizabeth Cosgriff-Hernandez","doi":"10.1002/jbm.a.37840","DOIUrl":"10.1002/jbm.a.37840","url":null,"abstract":"<div>\u0000 \u0000 <p>Conductive hydrogels have gained interest in biomedical applications and soft electronics. To tackle the challenge of ionic hydrogels falling short of desired mechanical properties in previous studies, our investigation aimed to understand the pivotal structural factors that impact the conductivity and mechanical behavior of polyethylene glycol (PEG)-based hydrogels with ionic conductivity. Polyether urethane diacrylamide (PEUDAm), a functionalized long-chain macromer based on PEG, was used to synthesize hydrogels with ionic conductivity conferred by incorporating ions into the liquid phase of the hydrogel. The impact of salt concentration, water content, temperature, and gel formation on both mechanical properties and conductivity was characterized to establish parameters for tuning hydrogel properties. To further expand the range of conductivity available in these ionic hydrogels, 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) was incorporated as a single copolymer network or double network configuration. As expected, conductivity in these ionic gels was primarily driven by ion diffusivity and charge density, which were dependent on hydrogel network formation and swelling. Copolymer network structure had minimal effect on the conductivity, which was primarily driven by counter-ion equilibrium; however, the mechanical properties and equilibrium swelling were strongly dependent on network structure. The structure–property relationships elucidated here enable the rationale design of this new double network hydrogel to achieve target properties for a broad range of biomedical applications.</p>\u0000 </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142693961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regenerated nanofibrous cellulose electrospun from ionic liquid: Tuning properties toward tissue engineering. 离子液体电纺再生纳米纤维素:调整组织工程特性。
IF 4.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-19 DOI: 10.1002/jbm.a.37798
Ingrida Pauliukaitytė,Darius Čiužas,Edvinas Krugly,Odeta Baniukaitienė,Mindaugas Bulota,Vilma Petrikaitė,Dainius Martuzevičius
Regenerated fibrous cellulose possesses a unique set of properties, including biocompatibility, biodegradability, and high surface area potential, but its applications in the biomedical sector have not been sufficiently explored. In this study, nanofibrous cellulose matrices were fabricated via a wet-electrospinning process using a binary system of the solvent ionic liquid (IL) 1-butyl-3-methylimidazolium acetate (BMIMAc) and co-solvent dimethyl sulfoxide (DMSO). The morphology of the matrices was controlled by varying the ratio of BMIMAc versus DMSO in the solvent system. The most effective ratio of 1:1 produced smooth fibers with diameters ranging from 200 to 400 nm. The nanofibrous cellulose matrix showed no cytotoxicity when tested on mouse fibroblast L929 cells whose viability remained above 95%. Human triple-negative breast cancer MDA-MB-231 cells also exhibited high viability even after 7 days of seeding and were able to penetrate deeper layers of the matrix, indicating high biocompatibility. These properties of nanofibrous cellulose demonstrate its potential for tissue engineering and cell culture applications.
再生纤维素具有一系列独特的特性,包括生物相容性、生物可降解性和高表面积潜力,但其在生物医学领域的应用尚未得到充分探索。在本研究中,采用溶剂离子液体(IL)1-丁基-3-甲基咪唑醋酸酯(BMIMAc)和助溶剂二甲基亚砜(DMSO)的二元体系,通过湿法电纺丝工艺制备了纳米纤维素基质。通过改变 BMIMAc 与 DMSO 在溶剂系统中的比例来控制基质的形态。最有效的比例为 1:1,可生成直径为 200 至 400 纳米的光滑纤维。在对小鼠成纤维细胞 L929 进行测试时,纳米纤维素基质没有显示出细胞毒性,其存活率保持在 95% 以上。人类三阴性乳腺癌 MDA-MB-231 细胞在播种 7 天后也表现出很高的存活率,并能穿透基质的深层,这表明它具有很高的生物相容性。纳米纤维素的这些特性证明了它在组织工程和细胞培养应用方面的潜力。
{"title":"Regenerated nanofibrous cellulose electrospun from ionic liquid: Tuning properties toward tissue engineering.","authors":"Ingrida Pauliukaitytė,Darius Čiužas,Edvinas Krugly,Odeta Baniukaitienė,Mindaugas Bulota,Vilma Petrikaitė,Dainius Martuzevičius","doi":"10.1002/jbm.a.37798","DOIUrl":"https://doi.org/10.1002/jbm.a.37798","url":null,"abstract":"Regenerated fibrous cellulose possesses a unique set of properties, including biocompatibility, biodegradability, and high surface area potential, but its applications in the biomedical sector have not been sufficiently explored. In this study, nanofibrous cellulose matrices were fabricated via a wet-electrospinning process using a binary system of the solvent ionic liquid (IL) 1-butyl-3-methylimidazolium acetate (BMIMAc) and co-solvent dimethyl sulfoxide (DMSO). The morphology of the matrices was controlled by varying the ratio of BMIMAc versus DMSO in the solvent system. The most effective ratio of 1:1 produced smooth fibers with diameters ranging from 200 to 400 nm. The nanofibrous cellulose matrix showed no cytotoxicity when tested on mouse fibroblast L929 cells whose viability remained above 95%. Human triple-negative breast cancer MDA-MB-231 cells also exhibited high viability even after 7 days of seeding and were able to penetrate deeper layers of the matrix, indicating high biocompatibility. These properties of nanofibrous cellulose demonstrate its potential for tissue engineering and cell culture applications.","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"3 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of biomedical materials research. Part A
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1