Mohamed M. Khader, Hijaz Ahmad, Mohamed Adel, Ahmed M. Megahed
{"title":"Numerical analysis of the MHD Williamson nanofluid flow over a nonlinear stretching sheet through a Darcy porous medium: Modeling and simulation","authors":"Mohamed M. Khader, Hijaz Ahmad, Mohamed Adel, Ahmed M. Megahed","doi":"10.1515/phys-2024-0016","DOIUrl":null,"url":null,"abstract":"In the current study, we delve into examining the movement of a nanofluid within a Williamson boundary layer, focusing on the analysis of heat and mass transfer (HMT) processes. This particular flow occurs over a sheet that undergoes nonlinear stretching. A significant facet of this investigation involves the incorporation of both the magnetic field and the influence of viscous dissipation within the model. The sheet is situated within a porous medium, and this medium conforms to the Darcy model. Since more precise outcomes are still required, the model assumes that both fluid conductivity and viscosity change with temperature. In this research, we encounter a system of extremely nonlinear ordinary differential equations that are treated through a numerical technique, specifically by employing the spectral collocation method. Graphical representations are used to illustrate how the relevant parameters impact the nanoparticle volume fraction, velocity, and temperature profiles. The study involves the computation and analysis of the effect of physical parameters on the local Sherwood number, skin friction coefficient, and local Nusselt number. Specific significant findings emerging from the present study highlight that the rate of mass transfer is particularly influenced by the thermophoresis factor, porous parameter, and Williamson parameter, showing heightened effects, while conversely, the Brownian motion parameter demonstrates an opposing pattern. The results were computed and subjected to a comparison with earlier research, indicating a notable degree of conformity and accord.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/phys-2024-0016","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the current study, we delve into examining the movement of a nanofluid within a Williamson boundary layer, focusing on the analysis of heat and mass transfer (HMT) processes. This particular flow occurs over a sheet that undergoes nonlinear stretching. A significant facet of this investigation involves the incorporation of both the magnetic field and the influence of viscous dissipation within the model. The sheet is situated within a porous medium, and this medium conforms to the Darcy model. Since more precise outcomes are still required, the model assumes that both fluid conductivity and viscosity change with temperature. In this research, we encounter a system of extremely nonlinear ordinary differential equations that are treated through a numerical technique, specifically by employing the spectral collocation method. Graphical representations are used to illustrate how the relevant parameters impact the nanoparticle volume fraction, velocity, and temperature profiles. The study involves the computation and analysis of the effect of physical parameters on the local Sherwood number, skin friction coefficient, and local Nusselt number. Specific significant findings emerging from the present study highlight that the rate of mass transfer is particularly influenced by the thermophoresis factor, porous parameter, and Williamson parameter, showing heightened effects, while conversely, the Brownian motion parameter demonstrates an opposing pattern. The results were computed and subjected to a comparison with earlier research, indicating a notable degree of conformity and accord.
期刊介绍:
Open Physics is a peer-reviewed, open access, electronic journal devoted to the publication of fundamental research results in all fields of physics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.