Frank J Schwebel, Matthew R Pearson, Dylan K Richards, Connor J McCabe, Verlin W Joseph,
{"title":"Regression tree applications to studying alcohol-related problems among college students.","authors":"Frank J Schwebel, Matthew R Pearson, Dylan K Richards, Connor J McCabe, Verlin W Joseph, ","doi":"10.1037/pha0000718","DOIUrl":null,"url":null,"abstract":"Machine learning algorithms hold promise for developing precision medicine approaches to addiction treatment yet have been used sparingly to identify predictors of alcohol-related problems. Recursive partitioning, a machine learning algorithm, can identify salient predictors and clinical cut points that can guide treatment. This study aimed to identify predictors and cut points of alcohol-related problems and to examine result stability in two separate, large data sets of college student drinkers (<i>n</i> = 5,090 and 2,808). Four regression trees were grown using the \"rpart\" package in R. Seventy-one predictors were classified as demographics (e.g., age), alcohol use indicators (e.g., typical quantity/frequency), or psychosocial indicators (e.g., anxiety). Predictors and cut points were extracted and used to manually recreate the tree in the other data set to test result stability. Outcome variables were alcohol-related problems as measured by the Alcohol Use Disorder Identification Test and Brief Young Adult Alcohol Consequences Questionnaire. Coping with depression, conformity motives, binge drinking frequency, typical/heaviest quantity, drunk frequency, serious harm reduction protective behavioral strategies, substance use, and psychosis symptoms best predicted alcohol-related problems across the four trees; coping with depression (cut point range: 1.83-2.17) and binge drinking frequency (cut point range: 1.5-2.5) were the most common splitting variables. Model fit indices suggest relatively stable results accounting for 17%-30% of the variance. Results suggest the nine salient predictors, particularly coping with depression motives scores around 2 and binge drinking frequency around two to three times per month, are important targets to consider when treating alcohol-related problems for college students. (PsycInfo Database Record (c) 2024 APA, all rights reserved).","PeriodicalId":12089,"journal":{"name":"Experimental and clinical psychopharmacology","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and clinical psychopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1037/pha0000718","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning algorithms hold promise for developing precision medicine approaches to addiction treatment yet have been used sparingly to identify predictors of alcohol-related problems. Recursive partitioning, a machine learning algorithm, can identify salient predictors and clinical cut points that can guide treatment. This study aimed to identify predictors and cut points of alcohol-related problems and to examine result stability in two separate, large data sets of college student drinkers (n = 5,090 and 2,808). Four regression trees were grown using the "rpart" package in R. Seventy-one predictors were classified as demographics (e.g., age), alcohol use indicators (e.g., typical quantity/frequency), or psychosocial indicators (e.g., anxiety). Predictors and cut points were extracted and used to manually recreate the tree in the other data set to test result stability. Outcome variables were alcohol-related problems as measured by the Alcohol Use Disorder Identification Test and Brief Young Adult Alcohol Consequences Questionnaire. Coping with depression, conformity motives, binge drinking frequency, typical/heaviest quantity, drunk frequency, serious harm reduction protective behavioral strategies, substance use, and psychosis symptoms best predicted alcohol-related problems across the four trees; coping with depression (cut point range: 1.83-2.17) and binge drinking frequency (cut point range: 1.5-2.5) were the most common splitting variables. Model fit indices suggest relatively stable results accounting for 17%-30% of the variance. Results suggest the nine salient predictors, particularly coping with depression motives scores around 2 and binge drinking frequency around two to three times per month, are important targets to consider when treating alcohol-related problems for college students. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
期刊介绍:
Experimental and Clinical Psychopharmacology publishes advances in translational and interdisciplinary research on psychopharmacology, broadly defined, and/or substance abuse.