Semantic-Enhanced Proxy-Guided Hashing for Long-Tailed Image Retrieval

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Multimedia Pub Date : 2024-04-29 DOI:10.1109/TMM.2024.3394684
Hongtao Xie;Yan Jiang;Lei Zhang;Pandeng Li;Dongming Zhang;Yongdong Zhang
{"title":"Semantic-Enhanced Proxy-Guided Hashing for Long-Tailed Image Retrieval","authors":"Hongtao Xie;Yan Jiang;Lei Zhang;Pandeng Li;Dongming Zhang;Yongdong Zhang","doi":"10.1109/TMM.2024.3394684","DOIUrl":null,"url":null,"abstract":"Hashing has been studied extensively for large-scale image retrieval due to its efficient computation and storage. Deep hashing methods typically train models with category-balanced data and suffer from a serious performance deterioration when dealing with long-tailed training samples. Recently, several long-tailed hashing methods focus on this newly emerging field for practical purpose. However, existing methods still face challenges that fixed category centers with limited semantic information cannot effectively improve the discriminative ability of tail-category hash codes. To tackle the issue, we propose a novel method called Semantic-enhanced Proxy-guided Hashing in this paper. We leverage two sets of learnable category proxies in the feature space and the Hamming space respectively, which can describe category semantics by getting updated continuously along with the whole model via back-propagation. Based on this, we introduce the Mahalanobis distance metric to characterize relationships accurately and enhance the semantic representation of both proxies and samples concurrently, improving the hash learning process. Moreover, we capture the multilateral correlations between proxies and samples in the feature space and extend a hypergraph neural network to transfer semantic knowledge from proxies to samples in the Hamming space. Extensive experiments show that our method achieves the state-of-the-art performance and surpasses existing methods by 1.47%–7.56% MAP on long-tailed benchmarks, demonstrating the superiority of learnable category proxies and the effectiveness of our proposed learning algorithm for long-tailed hashing.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"9499-9514"},"PeriodicalIF":8.4000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10509797/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Hashing has been studied extensively for large-scale image retrieval due to its efficient computation and storage. Deep hashing methods typically train models with category-balanced data and suffer from a serious performance deterioration when dealing with long-tailed training samples. Recently, several long-tailed hashing methods focus on this newly emerging field for practical purpose. However, existing methods still face challenges that fixed category centers with limited semantic information cannot effectively improve the discriminative ability of tail-category hash codes. To tackle the issue, we propose a novel method called Semantic-enhanced Proxy-guided Hashing in this paper. We leverage two sets of learnable category proxies in the feature space and the Hamming space respectively, which can describe category semantics by getting updated continuously along with the whole model via back-propagation. Based on this, we introduce the Mahalanobis distance metric to characterize relationships accurately and enhance the semantic representation of both proxies and samples concurrently, improving the hash learning process. Moreover, we capture the multilateral correlations between proxies and samples in the feature space and extend a hypergraph neural network to transfer semantic knowledge from proxies to samples in the Hamming space. Extensive experiments show that our method achieves the state-of-the-art performance and surpasses existing methods by 1.47%–7.56% MAP on long-tailed benchmarks, demonstrating the superiority of learnable category proxies and the effectiveness of our proposed learning algorithm for long-tailed hashing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对长尾图像检索的语义增强型路径引导哈希算法
由于哈希算法具有高效的计算和存储能力,因此在大规模图像检索方面得到了广泛的研究。深度散列方法通常使用类别平衡数据来训练模型,但在处理长尾训练样本时性能会严重下降。最近,一些长尾散列方法开始关注这一新兴领域的实用性。然而,现有方法仍然面临着一个挑战,即固定的类别中心和有限的语义信息无法有效提高尾类散列码的判别能力。为了解决这个问题,我们在本文中提出了一种名为 "语义增强的路径引导散列 "的新方法。我们分别利用特征空间和汉明空间中的两组可学习类别代理,通过反向传播与整个模型一起不断更新,从而描述类别语义。在此基础上,我们引入了 Mahalanobis 距离度量来准确表征关系,并同时增强代理和样本的语义表示,从而改进哈希学习过程。此外,我们还捕捉了特征空间中代理和样本之间的多边相关性,并扩展了超图神经网络,以便在汉明空间中将语义知识从代理转移到样本。广泛的实验表明,我们的方法达到了最先进的性能,并在长尾基准上以 1.47%-7.56% 的 MAP 超过了现有方法,证明了可学习类别代理的优越性和我们提出的长尾哈希学习算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
期刊最新文献
Deep Mutual Distillation for Unsupervised Domain Adaptation Person Re-identification Collaborative License Plate Recognition via Association Enhancement Network With Auxiliary Learning and a Unified Benchmark VLDadaptor: Domain Adaptive Object Detection with Vision-Language Model Distillation Camera-Incremental Object Re-Identification With Identity Knowledge Evolution Dual-View Data Hallucination With Semantic Relation Guidance for Few-Shot Image Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1