{"title":"Cross-Scatter Sparse Dictionary Pair Learning for Cross-Domain Classification","authors":"Lin Jiang;Jigang Wu;Shuping Zhao;Jiaxing Li","doi":"10.1109/TMM.2024.3521731","DOIUrl":null,"url":null,"abstract":"In cross-domain recognition tasks, the divergent distributions of data acquired from various domains degrade the effectiveness of knowledge transfer. Additionally, in practice, cross-domain data also contain a massive amount of redundant information, usually disturbing the training processes of cross-domain classifiers. Seeking to address these issues and obtain efficient domain-invariant knowledge, this paper proposes a novel cross-domain classification method, named cross-scatter sparse dictionary pair learning (CSSDL). Firstly, a pair of dictionaries is learned in a common subspace, in which the marginal distribution divergence between the cross-domain data is mitigated, and domain-invariant information can be efficiently extracted. Then, a cross-scatter discriminant term is proposed to decrease the distance between cross-domain data belonging to the same class. As such, this term guarantees that the data derived from same class can be aligned and that the conditional distribution divergence is mitigated. In addition, a flexible label regression method is introduced to match the feature representation and label information in the label space. Thereafter, a discriminative and transferable feature representation can be obtained. Moreover, two sparse constraints are introduced to maintain the sparse characteristics of the feature representation. Extensive experimental results obtained on public datasets demonstrate the effectiveness of the proposed CSSDL approach.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"371-384"},"PeriodicalIF":8.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10839637/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In cross-domain recognition tasks, the divergent distributions of data acquired from various domains degrade the effectiveness of knowledge transfer. Additionally, in practice, cross-domain data also contain a massive amount of redundant information, usually disturbing the training processes of cross-domain classifiers. Seeking to address these issues and obtain efficient domain-invariant knowledge, this paper proposes a novel cross-domain classification method, named cross-scatter sparse dictionary pair learning (CSSDL). Firstly, a pair of dictionaries is learned in a common subspace, in which the marginal distribution divergence between the cross-domain data is mitigated, and domain-invariant information can be efficiently extracted. Then, a cross-scatter discriminant term is proposed to decrease the distance between cross-domain data belonging to the same class. As such, this term guarantees that the data derived from same class can be aligned and that the conditional distribution divergence is mitigated. In addition, a flexible label regression method is introduced to match the feature representation and label information in the label space. Thereafter, a discriminative and transferable feature representation can be obtained. Moreover, two sparse constraints are introduced to maintain the sparse characteristics of the feature representation. Extensive experimental results obtained on public datasets demonstrate the effectiveness of the proposed CSSDL approach.
期刊介绍:
The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.