{"title":"Estimating PV Soiling Loss Using Panel Images and a Feature-Based Regression Model","authors":"Mingda Yang;Wasim Javed;Bing Guo;Jim Ji","doi":"10.1109/JPHOTOV.2024.3388168","DOIUrl":null,"url":null,"abstract":"Solar energy from solar photovoltaics (PV) has become a rapidly growing sustainable energy source around the world. However, maintaining PV system efficiency remains a challenging problem. In desert regions, soiling is one of the most significant environmental factors that can cause PV system loss. In our early work, a PV soiling loss estimation method based on a single-image feature and in-lab testing was developed. In this study, we extend our previous work by incorporating various image features in a machine-learning regression model to predict PV soiling loss. The new model is trained and tested using PV performance data and RAW panel images collected in the field over several months, covering real-time soiling loss levels up to about 28%. There are 479 RAW images with 21 unique soiling loss levels, which were taken under different camera settings. The results show that the new method can reliably predict the soiling loss when the images are taken under similar settings as the training data (\n<italic>R</i>\n-squared value of 0.98 and normalized RMSE is 0.01 for the training dataset).","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"14 4","pages":"661-668"},"PeriodicalIF":2.5000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10517757/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Solar energy from solar photovoltaics (PV) has become a rapidly growing sustainable energy source around the world. However, maintaining PV system efficiency remains a challenging problem. In desert regions, soiling is one of the most significant environmental factors that can cause PV system loss. In our early work, a PV soiling loss estimation method based on a single-image feature and in-lab testing was developed. In this study, we extend our previous work by incorporating various image features in a machine-learning regression model to predict PV soiling loss. The new model is trained and tested using PV performance data and RAW panel images collected in the field over several months, covering real-time soiling loss levels up to about 28%. There are 479 RAW images with 21 unique soiling loss levels, which were taken under different camera settings. The results show that the new method can reliably predict the soiling loss when the images are taken under similar settings as the training data (
R
-squared value of 0.98 and normalized RMSE is 0.01 for the training dataset).
期刊介绍:
The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.