首页 > 最新文献

IEEE Journal of Photovoltaics最新文献

英文 中文
Call for Papers for a Special Issue of IEEE Transactions on Electron Devices
IF 2.5 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2025-02-20 DOI: 10.1109/JPHOTOV.2025.3540337
{"title":"Call for Papers for a Special Issue of IEEE Transactions on Electron Devices","authors":"","doi":"10.1109/JPHOTOV.2025.3540337","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3540337","url":null,"abstract":"","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 2","pages":"375-376"},"PeriodicalIF":2.5,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10897236","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Call for Papers for a Special Issue of IEEE Transactions on Materials for Electron Devices
IF 2.5 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2025-02-20 DOI: 10.1109/JPHOTOV.2025.3540335
{"title":"Call for Papers for a Special Issue of IEEE Transactions on Materials for Electron Devices","authors":"","doi":"10.1109/JPHOTOV.2025.3540335","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3540335","url":null,"abstract":"","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 2","pages":"373-374"},"PeriodicalIF":2.5,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10897241","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Photovoltaics Publication Information
IF 2.5 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2025-02-20 DOI: 10.1109/JPHOTOV.2025.3537259
{"title":"IEEE Journal of Photovoltaics Publication Information","authors":"","doi":"10.1109/JPHOTOV.2025.3537259","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3537259","url":null,"abstract":"","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 2","pages":"C2-C2"},"PeriodicalIF":2.5,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10897235","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Announcing an IEEE/Optica Publishing Group Journal of Lightwave Technology Specail Issue
IF 2.5 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2025-02-20 DOI: 10.1109/JPHOTOV.2025.3540329
{"title":"Announcing an IEEE/Optica Publishing Group Journal of Lightwave Technology Specail Issue","authors":"","doi":"10.1109/JPHOTOV.2025.3540329","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3540329","url":null,"abstract":"","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 2","pages":"377-377"},"PeriodicalIF":2.5,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10897244","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Photovoltaics Information for Authors
IF 2.5 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2025-02-20 DOI: 10.1109/JPHOTOV.2025.3537263
{"title":"IEEE Journal of Photovoltaics Information for Authors","authors":"","doi":"10.1109/JPHOTOV.2025.3537263","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3537263","url":null,"abstract":"","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 2","pages":"C3-C3"},"PeriodicalIF":2.5,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10897242","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Top-Performing Photovoltaic Cells Compared to the Shockley–Queisser Limit
IF 2.5 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2025-02-07 DOI: 10.1109/JPHOTOV.2025.3533883
Camden Kasik;Marko Jošt;Ishwor Khatri;Marko Topič;James Sites
Top-performing single-junction and two-terminal tandem devices that include at least one polycrystalline cell are compared with each other and their ideal limits. The parameters of open-circuit voltage, short-circuit current, and fill-factor are individually compared to the Shockley–Queisser limit to investigate where different technologies have room to improve. Technologies, such as silicon and cadmium telluride have the most room for improvement in open-circuit voltage currently utilizing 87% and 81% of their maxima, respectively. Detailed diode and fill-factor loss analysis is presented for single-junction devices to give further insight on how they compare and where efficiency is lost. Single-crystal technologies demonstrate a fill-factor closer to the Shockley–Queisser limit than polycrystalline devices. The high diode quality factor of polycrystalline devices is the leading cause of the decreased fill-factor. Similar analysis on tandem cells with at least one thin-film cell shows that although their efficiency exceeds that of the single-junction cells, the fraction of their ideal efficiency is smaller. By comparing parameters to the Shockley–Queisser limit, it becomes clearer where certain technologies have the potential for improvement.
{"title":"Top-Performing Photovoltaic Cells Compared to the Shockley–Queisser Limit","authors":"Camden Kasik;Marko Jošt;Ishwor Khatri;Marko Topič;James Sites","doi":"10.1109/JPHOTOV.2025.3533883","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3533883","url":null,"abstract":"Top-performing single-junction and two-terminal tandem devices that include at least one polycrystalline cell are compared with each other and their ideal limits. The parameters of open-circuit voltage, short-circuit current, and fill-factor are individually compared to the Shockley–Queisser limit to investigate where different technologies have room to improve. Technologies, such as silicon and cadmium telluride have the most room for improvement in open-circuit voltage currently utilizing 87% and 81% of their maxima, respectively. Detailed diode and fill-factor loss analysis is presented for single-junction devices to give further insight on how they compare and where efficiency is lost. Single-crystal technologies demonstrate a fill-factor closer to the Shockley–Queisser limit than polycrystalline devices. The high diode quality factor of polycrystalline devices is the leading cause of the decreased fill-factor. Similar analysis on tandem cells with at least one thin-film cell shows that although their efficiency exceeds that of the single-junction cells, the fraction of their ideal efficiency is smaller. By comparing parameters to the Shockley–Queisser limit, it becomes clearer where certain technologies have the potential for improvement.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 2","pages":"268-273"},"PeriodicalIF":2.5,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Field-Exposed Photovoltaic Modules Featuring Signs of Contact Degradation
IF 2.5 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2025-02-07 DOI: 10.1109/JPHOTOV.2025.3531052
Max Liggett;Dylan J. Colvin;Andrew Ballen;Manjunath Matam;Hubert P. Seigneur;Mengjie Li;Andrew M. Gabor;Philip J. Knodle;Craig J. Neal;Sudipta Seal;Daniel Riley;Bruce H. King;Peter Michael;Laura S. Bruckman;Roger H. French;Kristopher O. Davis
This work investigates several photovoltaic (PV) modules that have shown signs of metal contact corrosion due to field exposure in a hot and humid climate. This includes two multicrystalline silicon aluminum back surface field systems with 10 and 14 years of exposure and one monocrystalline silicon passivated emitter and rear cell system with four years of exposure. A comprehensive, multiscale characterization process is used to evaluate these PV modules in great detail. Current–voltage ($I-V$), Suns-$V_{text{OC}}$ measurements, electroluminescence imaging, infrared imaging, and ultraviolet fluorescence imaging were performed, and locations of interest were cored and analyzed using cross-sectional scanning electron microscopy (SEM). A rigorous, quantitative analysis procedure for the cross-sectional SEM images is proposed and implemented. Careful characterization does reveal that some of these PV modules do indeed exhibit the same classic signs of acetic-acid-based corrosion of the glass frit that is present at the silver/silicon interface, which have been observed previously in PV modules exposed to damp heat in an environmental chamber.
{"title":"Characterization of Field-Exposed Photovoltaic Modules Featuring Signs of Contact Degradation","authors":"Max Liggett;Dylan J. Colvin;Andrew Ballen;Manjunath Matam;Hubert P. Seigneur;Mengjie Li;Andrew M. Gabor;Philip J. Knodle;Craig J. Neal;Sudipta Seal;Daniel Riley;Bruce H. King;Peter Michael;Laura S. Bruckman;Roger H. French;Kristopher O. Davis","doi":"10.1109/JPHOTOV.2025.3531052","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3531052","url":null,"abstract":"This work investigates several photovoltaic (PV) modules that have shown signs of metal contact corrosion due to field exposure in a hot and humid climate. This includes two multicrystalline silicon aluminum back surface field systems with 10 and 14 years of exposure and one monocrystalline silicon passivated emitter and rear cell system with four years of exposure. A comprehensive, multiscale characterization process is used to evaluate these PV modules in great detail. Current–voltage (<inline-formula><tex-math>$I-V$</tex-math></inline-formula>), Suns-<inline-formula><tex-math>$V_{text{OC}}$</tex-math></inline-formula> measurements, electroluminescence imaging, infrared imaging, and ultraviolet fluorescence imaging were performed, and locations of interest were cored and analyzed using cross-sectional scanning electron microscopy (SEM). A rigorous, quantitative analysis procedure for the cross-sectional SEM images is proposed and implemented. Careful characterization does reveal that some of these PV modules do indeed exhibit the same classic signs of acetic-acid-based corrosion of the glass frit that is present at the silver/silicon interface, which have been observed previously in PV modules exposed to damp heat in an environmental chamber.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 2","pages":"233-243"},"PeriodicalIF":2.5,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Single Voltage Sensor Bypass Switch-Based Photovoltaic Fault Localization
IF 2.5 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2025-02-07 DOI: 10.1109/JPHOTOV.2025.3530001
Ali Alhejab;Muhammad Abbasi;Shehab Ahmed
Photovoltaic (PV) energy systems are becoming an important source of sustainable energy. However, undiscovered faults within these systems may cause significant efficiency reduction. Localizing these faults to the module level is important for a quick fault diagnosis and maintaining the overall system efficiency. This article presents a novel method to localize intrastring, line-ground, cross-string, and partial shading faults in an $N$ × $M$ PV system down to the module level. The approach utilizes a single voltage sensor in the combiner box of the PV system and $lceil N/2 rceil$ bypass switches per string to bypass the connected PV modules during faults. The technique initially relies on identifying the faulty string. Once this string is determined, the voltage associated with each module in that string is found. Each module's voltage in that string is obtained by measuring the string voltage after bypassing each module corresponding to an activated switch. Subsequently, the resulting linear equations are solved to obtain the voltage of each module in the faulty string. The technique is verified using simulation and an experimental setup for a 5 x 4 small-size PV system. Experimental and simulation results demonstrate that the technique can accurately localize faulty modules with only $N$ voltage samples of the faulty string. The proposed method is robust to variations in the maximum power point tracking algorithm, ensuring faults are localized effectively in real-time.
{"title":"A Single Voltage Sensor Bypass Switch-Based Photovoltaic Fault Localization","authors":"Ali Alhejab;Muhammad Abbasi;Shehab Ahmed","doi":"10.1109/JPHOTOV.2025.3530001","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3530001","url":null,"abstract":"Photovoltaic (PV) energy systems are becoming an important source of sustainable energy. However, undiscovered faults within these systems may cause significant efficiency reduction. Localizing these faults to the module level is important for a quick fault diagnosis and maintaining the overall system efficiency. This article presents a novel method to localize intrastring, line-ground, cross-string, and partial shading faults in an <inline-formula><tex-math>$N$</tex-math></inline-formula> × <inline-formula><tex-math>$M$</tex-math></inline-formula> PV system down to the module level. The approach utilizes a single voltage sensor in the combiner box of the PV system and <inline-formula><tex-math>$lceil N/2 rceil$</tex-math></inline-formula> bypass switches per string to bypass the connected PV modules during faults. The technique initially relies on identifying the faulty string. Once this string is determined, the voltage associated with each module in that string is found. Each module's voltage in that string is obtained by measuring the string voltage after bypassing each module corresponding to an activated switch. Subsequently, the resulting linear equations are solved to obtain the voltage of each module in the faulty string. The technique is verified using simulation and an experimental setup for a 5 x 4 small-size PV system. Experimental and simulation results demonstrate that the technique can accurately localize faulty modules with only <inline-formula><tex-math>$N$</tex-math></inline-formula> voltage samples of the faulty string. The proposed method is robust to variations in the maximum power point tracking algorithm, ensuring faults are localized effectively in real-time.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 2","pages":"362-372"},"PeriodicalIF":2.5,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasonic Tinning of Al Busbars for a Silver-Free Rear Side on Bifacial Silicon Solar Cells
IF 2.5 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2025-02-06 DOI: 10.1109/JPHOTOV.2025.3533901
Malte Brinkmann;Thomas Daschinger;Rolf Brendel;Henning Schulte-Huxel
Reducing the silver consumption of photovoltaics (PV) is a major aspect in recent solar cell research. For bifacial PERC+ solar cells silver is used for the front contact. On the rear side aluminum metallization provides the contact to the silicon. The native oxide of aluminum prohibits a standard soldering process. Therefore, rear side silver pads are typically used for the cell-to-cell interconnections with copper wires. Silver can be avoided when using ultrasonic soldering for wetting the aluminum metallization to form tin solder pads. We demonstrate mechanically stable soldering of interconnects to the silver-free solder pads with a median adhesion up to 3 N/mm. We observe a penetration of the native aluminum oxide layer by the ultrasonic tinning process and the formation of metal-to-metal contacts from the aluminum to the solder. Resistance measurements demonstrate a reduced series resistance of the ultrasonically prepared contact when compared with using silver pads. For PERC+ cells, we can thus fully avoid rear side silver pads for a standard stringing process to reduce the silver consumption by 20%–40%. We fabricate mini modules that reach the same efficiency as reference modules with standard silver pads on the rear. The efficiency degradation of the modules with the ultrasonic interconnection is less than 3.6% after 200 humidity-freeze cycles and less than 2.2% after 600 temperature cycles.
{"title":"Ultrasonic Tinning of Al Busbars for a Silver-Free Rear Side on Bifacial Silicon Solar Cells","authors":"Malte Brinkmann;Thomas Daschinger;Rolf Brendel;Henning Schulte-Huxel","doi":"10.1109/JPHOTOV.2025.3533901","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3533901","url":null,"abstract":"Reducing the silver consumption of photovoltaics (PV) is a major aspect in recent solar cell research. For bifacial PERC+ solar cells silver is used for the front contact. On the rear side aluminum metallization provides the contact to the silicon. The native oxide of aluminum prohibits a standard soldering process. Therefore, rear side silver pads are typically used for the cell-to-cell interconnections with copper wires. Silver can be avoided when using ultrasonic soldering for wetting the aluminum metallization to form tin solder pads. We demonstrate mechanically stable soldering of interconnects to the silver-free solder pads with a median adhesion up to 3 N/mm. We observe a penetration of the native aluminum oxide layer by the ultrasonic tinning process and the formation of metal-to-metal contacts from the aluminum to the solder. Resistance measurements demonstrate a reduced series resistance of the ultrasonically prepared contact when compared with using silver pads. For PERC+ cells, we can thus fully avoid rear side silver pads for a standard stringing process to reduce the silver consumption by 20%–40%. We fabricate mini modules that reach the same efficiency as reference modules with standard silver pads on the rear. The efficiency degradation of the modules with the ultrasonic interconnection is less than 3.6% after 200 humidity-freeze cycles and less than 2.2% after 600 temperature cycles.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 2","pages":"244-251"},"PeriodicalIF":2.5,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the Potential of Polycrystalline Al0.25Ga0.75P and Al0.9Ga0.1As as Hole Contacts in Silicon Heterojunction Solar Cells
IF 2.5 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2025-02-06 DOI: 10.1109/JPHOTOV.2024.3519616
David Quispe;Brendan Eng;Mijung Kim;Brian J. Coppa;Minjoo L. Lee;Zachary C. Holman
The parasitic absorption of visible light in amorphous silicon layers can result in a short-circuit current density (Jsc) loss of up to 2 mA/cm2 for silicon heterojunction solar cells. To mitigate this issue, we explore the potential for polycrystalline Al0.25Ga0.75P and Al0.9Ga0.1As, both nonepitaxially deposited at 250 °C, to enable high Jsc while serving as alternative hole contacts to p-type amorphous silicon [a-Si:H(p)]. Using a suite of device characterization methods, we investigate how the passivation changes with the deposition of these III–V materials and their degree of hole selectivity. We identify that both Al0.25Ga0.75P and Al0.9Ga0.1As can still enable high implied open-circuit voltages >720 mV; however, they are not hole selective enough to enable high open-circuit voltage and fill factor. Ultimately, the best performing solar cells are limited to 9.6% and 10.8% efficiency with a nominal 5 nm of Al0.25Ga0.75P and a measured 13 nm of Al0.9Ga0.1As, respectively. However, both cells demonstrate higher Jsc than a reference cell with a-Si:H(p) that has a similar nominal thickness.
{"title":"Evaluating the Potential of Polycrystalline Al0.25Ga0.75P and Al0.9Ga0.1As as Hole Contacts in Silicon Heterojunction Solar Cells","authors":"David Quispe;Brendan Eng;Mijung Kim;Brian J. Coppa;Minjoo L. Lee;Zachary C. Holman","doi":"10.1109/JPHOTOV.2024.3519616","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2024.3519616","url":null,"abstract":"The parasitic absorption of visible light in amorphous silicon layers can result in a short-circuit current density (<italic>J</i><sub>sc</sub>) loss of up to 2 mA/cm<sup>2</sup> for silicon heterojunction solar cells. To mitigate this issue, we explore the potential for polycrystalline Al<sub>0.25</sub>Ga<sub>0.75</sub>P and Al<sub>0.9</sub>Ga<sub>0.1</sub>As, both <italic>nonepitaxially</i> deposited at 250 °C, to enable high <italic>J</i><sub>sc</sub> while serving as alternative hole contacts to p-type amorphous silicon [a-Si:H(p)]. Using a suite of device characterization methods, we investigate how the passivation changes with the deposition of these III–V materials and their degree of hole selectivity. We identify that both Al<sub>0.25</sub>Ga<sub>0.75</sub>P and Al<sub>0.9</sub>Ga<sub>0.1</sub>As can still enable high implied open-circuit voltages >720 mV; however, they are not hole selective enough to enable high open-circuit voltage and fill factor. Ultimately, the best performing solar cells are limited to 9.6% and 10.8% efficiency with a nominal 5 nm of Al<sub>0.25</sub>Ga<sub>0.75</sub>P and a measured 13 nm of Al<sub>0.9</sub>Ga<sub>0.1</sub>As, respectively. However, both cells demonstrate higher <italic>J</i><sub>sc</sub> than a reference cell with a-Si:H(p) that has a similar nominal thickness.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 2","pages":"223-232"},"PeriodicalIF":2.5,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Journal of Photovoltaics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1