Assessment of air quality benefits of vegetation in an urban-industrial region of India by integrating air monitoring with i-Tree Eco model

IF 1.5 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Clean-soil Air Water Pub Date : 2024-05-02 DOI:10.1002/clen.202300198
Mallika Vashist, Thangamani Vijaya Kumar, Santosh Kumar Singh
{"title":"Assessment of air quality benefits of vegetation in an urban-industrial region of India by integrating air monitoring with i-Tree Eco model","authors":"Mallika Vashist,&nbsp;Thangamani Vijaya Kumar,&nbsp;Santosh Kumar Singh","doi":"10.1002/clen.202300198","DOIUrl":null,"url":null,"abstract":"<p>In the last few years, urban trees have emerged as an effective nature-based solution to mitigate increasing air pollutant levels due to urbanization and industrialization. This study aims to assess the synergistic effect of urban trees on improving air quality by combining real-time PM<sub>2.5</sub> monitoring with the i-Tree Eco model. The monitoring was conducted during rush hours with high traffic volume and during non-rush hours, in both the tree alley and a non-tree road section within the industrial areas of the north-west region of the National Capital Territory of Delhi, India. The i-Tree Eco model was run using the diameter at breast height values of tree species present in the study area, and the PM<sub>2.5</sub> reduction ability of the trees was quantified. The results from both approaches indicated that urban trees can significantly reduce the traffic-fed PM<sub>2.5</sub> concentrations. Therefore, it is suggested that tree plantations be integrated into air pollution management strategies in urbanized regions with high traffic volumes. Although this study explores the initial link between trees and air quality in Delhi, further research incorporating local wind speed and direction measurements would provide a more comprehensive understanding of how trees influence air quality in any highly polluted urban setting.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 7","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clen.202300198","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In the last few years, urban trees have emerged as an effective nature-based solution to mitigate increasing air pollutant levels due to urbanization and industrialization. This study aims to assess the synergistic effect of urban trees on improving air quality by combining real-time PM2.5 monitoring with the i-Tree Eco model. The monitoring was conducted during rush hours with high traffic volume and during non-rush hours, in both the tree alley and a non-tree road section within the industrial areas of the north-west region of the National Capital Territory of Delhi, India. The i-Tree Eco model was run using the diameter at breast height values of tree species present in the study area, and the PM2.5 reduction ability of the trees was quantified. The results from both approaches indicated that urban trees can significantly reduce the traffic-fed PM2.5 concentrations. Therefore, it is suggested that tree plantations be integrated into air pollution management strategies in urbanized regions with high traffic volumes. Although this study explores the initial link between trees and air quality in Delhi, further research incorporating local wind speed and direction measurements would provide a more comprehensive understanding of how trees influence air quality in any highly polluted urban setting.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过将空气监测与 i-Tree Eco 模型相结合,评估植被对印度城市工业区空气质量的益处
在过去几年中,城市树木已成为一种有效的自然解决方案,可以缓解城市化和工业化导致的空气污染物水平不断上升的问题。本研究旨在通过将 PM2.5 实时监测与 i-Tree Eco 模型相结合,评估城市树木对改善空气质量的协同效应。监测在交通繁忙时段和非繁忙时段进行,分别在印度德里国家首都直辖区西北部工业区内的有树小巷和无树路段进行。i-Tree Eco 模型使用了研究区域内树种的胸径值,并对树木的 PM2.5 减排能力进行了量化。这两种方法得出的结果表明,城市树木可以显著降低交通造成的 PM2.5 浓度。因此,建议将植树造林纳入交通流量大的城市化地区的空气污染管理策略中。虽然本研究初步探讨了树木与德里空气质量之间的联系,但结合当地风速和风向测量结果的进一步研究将有助于更全面地了解树木如何影响任何高污染城市环境中的空气质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Clean-soil Air Water
Clean-soil Air Water 环境科学-海洋与淡水生物学
CiteScore
2.80
自引率
5.90%
发文量
88
审稿时长
3.6 months
期刊介绍: CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications. Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.
期刊最新文献
Issue Information: Clean Soil Air Water. 11/2024 Effect of Intercropping Soybean on the Diversity of the Rhizosphere Soil Arbuscular Mycorrhizal Fungi Communities in Wheat Field Short-Term Benefits of Tillage and Agronomic Biofortification for Soybean–Wheat Cropping in Central India Issue Information: Clean Soil Air Water. 10/2024 Geochemical Interaction and Bioavailability of Zinc in Soil Under Long-Term Integrated Nutrient Management in Pearl Millet–Wheat System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1