PYPE: A pipeline for phenome-wide association and Mendelian randomization in investigator-driven biobank scale analysis

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Patterns Pub Date : 2024-05-01 DOI:10.1016/j.patter.2024.100982
Taykhoom Dalal, Chirag J. Patel
{"title":"PYPE: A pipeline for phenome-wide association and Mendelian randomization in investigator-driven biobank scale analysis","authors":"Taykhoom Dalal, Chirag J. Patel","doi":"10.1016/j.patter.2024.100982","DOIUrl":null,"url":null,"abstract":"<p>Phenome-wide association studies (PheWASs) serve as a way of documenting the relationship between genotypes and multiple phenotypes, helping to uncover unexplored genotype-phenotype associations (known as pleiotropy). Secondly, Mendelian randomization (MR) can be harnessed to make causal statements about a pair of phenotypes by comparing their genetic architecture. Thus, approaches that automate both PheWASs and MR can enhance biobank-scale analyses, circumventing the need for multiple tools by providing a comprehensive, end-to-end tool to drive scientific discovery. To this end, we present PYPE, a Python pipeline for running, visualizing, and interpreting PheWASs. PYPE utilizes input genotype or phenotype files to automatically estimate associations between the chosen independent variables and phenotypes. PYPE can also produce a variety of visualizations and can be used to identify nearby genes and functional consequences of significant associations. Finally, PYPE can identify possible causal relationships between phenotypes using MR under a variety of causal effect modeling scenarios.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"36 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.100982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Phenome-wide association studies (PheWASs) serve as a way of documenting the relationship between genotypes and multiple phenotypes, helping to uncover unexplored genotype-phenotype associations (known as pleiotropy). Secondly, Mendelian randomization (MR) can be harnessed to make causal statements about a pair of phenotypes by comparing their genetic architecture. Thus, approaches that automate both PheWASs and MR can enhance biobank-scale analyses, circumventing the need for multiple tools by providing a comprehensive, end-to-end tool to drive scientific discovery. To this end, we present PYPE, a Python pipeline for running, visualizing, and interpreting PheWASs. PYPE utilizes input genotype or phenotype files to automatically estimate associations between the chosen independent variables and phenotypes. PYPE can also produce a variety of visualizations and can be used to identify nearby genes and functional consequences of significant associations. Finally, PYPE can identify possible causal relationships between phenotypes using MR under a variety of causal effect modeling scenarios.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PYPE:研究者驱动的生物库规模分析中的全表型关联和孟德尔随机化管道
全表型关联研究(Phenome-wide association studies,PheWASs)是记录基因型与多种表型之间关系的一种方法,有助于发现尚未探索的基因型与表型之间的关联(称为多效性)。其次,孟德尔随机化(MR)可以通过比较一对表型的遗传结构,对其因果关系做出说明。因此,同时实现 PheWAS 和 MR 自动化的方法可以加强生物库规模的分析,通过提供全面的端到端工具来推动科学发现,从而避免对多种工具的需求。为此,我们推出了PYPE,一种用于运行、可视化和解释PheWAS的Python管道。PYPE利用输入的基因型或表型文件自动估计所选自变量与表型之间的关联。PYPE还能生成各种可视化结果,并可用于识别附近的基因和显著关联的功能性后果。最后,PYPE 还能在各种因果效应建模情况下使用 MR 识别表型之间可能存在的因果关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
期刊最新文献
Data-knowledge co-driven innovations in engineering and management. Integration of large language models and federated learning. Decorrelative network architecture for robust electrocardiogram classification. Best holdout assessment is sufficient for cancer transcriptomic model selection. The recent Physics and Chemistry Nobel Prizes, AI, and the convergence of knowledge fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1