{"title":"PYPE: A pipeline for phenome-wide association and Mendelian randomization in investigator-driven biobank scale analysis","authors":"Taykhoom Dalal, Chirag J. Patel","doi":"10.1016/j.patter.2024.100982","DOIUrl":null,"url":null,"abstract":"<p>Phenome-wide association studies (PheWASs) serve as a way of documenting the relationship between genotypes and multiple phenotypes, helping to uncover unexplored genotype-phenotype associations (known as pleiotropy). Secondly, Mendelian randomization (MR) can be harnessed to make causal statements about a pair of phenotypes by comparing their genetic architecture. Thus, approaches that automate both PheWASs and MR can enhance biobank-scale analyses, circumventing the need for multiple tools by providing a comprehensive, end-to-end tool to drive scientific discovery. To this end, we present PYPE, a Python pipeline for running, visualizing, and interpreting PheWASs. PYPE utilizes input genotype or phenotype files to automatically estimate associations between the chosen independent variables and phenotypes. PYPE can also produce a variety of visualizations and can be used to identify nearby genes and functional consequences of significant associations. Finally, PYPE can identify possible causal relationships between phenotypes using MR under a variety of causal effect modeling scenarios.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"36 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.100982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Phenome-wide association studies (PheWASs) serve as a way of documenting the relationship between genotypes and multiple phenotypes, helping to uncover unexplored genotype-phenotype associations (known as pleiotropy). Secondly, Mendelian randomization (MR) can be harnessed to make causal statements about a pair of phenotypes by comparing their genetic architecture. Thus, approaches that automate both PheWASs and MR can enhance biobank-scale analyses, circumventing the need for multiple tools by providing a comprehensive, end-to-end tool to drive scientific discovery. To this end, we present PYPE, a Python pipeline for running, visualizing, and interpreting PheWASs. PYPE utilizes input genotype or phenotype files to automatically estimate associations between the chosen independent variables and phenotypes. PYPE can also produce a variety of visualizations and can be used to identify nearby genes and functional consequences of significant associations. Finally, PYPE can identify possible causal relationships between phenotypes using MR under a variety of causal effect modeling scenarios.