{"title":"CURE: A deep learning framework pre-trained on large-scale patient data for treatment effect estimation","authors":"Ruoqi Liu, Pin-Yu Chen, Ping Zhang","doi":"10.1016/j.patter.2024.100973","DOIUrl":null,"url":null,"abstract":"<p>Treatment effect estimation (TEE) aims to identify the causal effects of treatments on important outcomes. Current machine-learning-based methods, mainly trained on labeled data for specific treatments or outcomes, can be sub-optimal with limited labeled data. In this article, we propose a new pre-training and fine-tuning framework, CURE (causal treatment effect estimation), for TEE from observational data. CURE is pre-trained on large-scale unlabeled patient data to learn representative contextual patient representations and fine-tuned on labeled patient data for TEE. We present a new sequence encoding approach for longitudinal patient data embedding both structure and time. Evaluated on four downstream TEE tasks, CURE outperforms the state-of-the-art methods, marking a 7% increase in area under the precision-recall curve and an 8% rise in the influence-function-based precision of estimating heterogeneous effects. Validation with four randomized clinical trials confirms its efficacy in producing trial conclusions, highlighting CURE’s capacity to supplement traditional clinical trials.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"2011 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.100973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Treatment effect estimation (TEE) aims to identify the causal effects of treatments on important outcomes. Current machine-learning-based methods, mainly trained on labeled data for specific treatments or outcomes, can be sub-optimal with limited labeled data. In this article, we propose a new pre-training and fine-tuning framework, CURE (causal treatment effect estimation), for TEE from observational data. CURE is pre-trained on large-scale unlabeled patient data to learn representative contextual patient representations and fine-tuned on labeled patient data for TEE. We present a new sequence encoding approach for longitudinal patient data embedding both structure and time. Evaluated on four downstream TEE tasks, CURE outperforms the state-of-the-art methods, marking a 7% increase in area under the precision-recall curve and an 8% rise in the influence-function-based precision of estimating heterogeneous effects. Validation with four randomized clinical trials confirms its efficacy in producing trial conclusions, highlighting CURE’s capacity to supplement traditional clinical trials.