MSD: Continuous Pharmaceutical Manufacturing Data for the 2024 MSOM Data-Driven Research Challenge

Tugce Martagan, Marc Baaijens, Coen Dirckx, James Holman, Robert Meyer, Oscar Repping, Bram van Ravenstein
{"title":"MSD: Continuous Pharmaceutical Manufacturing Data for the 2024 MSOM Data-Driven Research Challenge","authors":"Tugce Martagan, Marc Baaijens, Coen Dirckx, James Holman, Robert Meyer, Oscar Repping, Bram van Ravenstein","doi":"10.1287/msom.2024.0860","DOIUrl":null,"url":null,"abstract":"To support the 2024 MSOM Data-Driven Research Challenge, Merck & Co., Inc., Rahway, New Jersey (hereafter “MSD”), provides pharmaceutical manufacturing data from a continuous tablet production setting. The data set contains approximately 300 million data points related to around 75 process parameters monitored over 120 hours. In this paper, we present the data set and share our vision to inspire and facilitate new applications of operations management (OM) methodologies in pharmaceutical manufacturing. We begin with an introduction to pharmaceutical manufacturing for OM researchers and then elaborate on emerging technologies, common industry challenges, and research opportunities. We explain the data set and propose a roadmap for future research directions. Researchers are welcome to examine the proposed research questions or analyze other research questions using the data set.History: This paper has been accepted as part of the 2024 MSOM Data-Driven Research Challenge.Funding: This work was supported by The Dutch Research Council - NWO VIDI Grant.Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2024.0860","PeriodicalId":501267,"journal":{"name":"Manufacturing & Service Operations Management","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing & Service Operations Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/msom.2024.0860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To support the 2024 MSOM Data-Driven Research Challenge, Merck & Co., Inc., Rahway, New Jersey (hereafter “MSD”), provides pharmaceutical manufacturing data from a continuous tablet production setting. The data set contains approximately 300 million data points related to around 75 process parameters monitored over 120 hours. In this paper, we present the data set and share our vision to inspire and facilitate new applications of operations management (OM) methodologies in pharmaceutical manufacturing. We begin with an introduction to pharmaceutical manufacturing for OM researchers and then elaborate on emerging technologies, common industry challenges, and research opportunities. We explain the data set and propose a roadmap for future research directions. Researchers are welcome to examine the proposed research questions or analyze other research questions using the data set.History: This paper has been accepted as part of the 2024 MSOM Data-Driven Research Challenge.Funding: This work was supported by The Dutch Research Council - NWO VIDI Grant.Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2024.0860
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MSD:为 2024 年 MSOM 数据驱动研究挑战提供连续的制药数据
为支持 2024 MSOM 数据驱动研究挑战赛,位于新泽西州拉威的默克公司(以下简称 "MSD")提供了来自连续片剂生产环境的制药生产数据。数据集包含约 3 亿个数据点,涉及 120 小时内监控的约 75 个过程参数。在本文中,我们将介绍该数据集,并分享我们的愿景,以启发和促进运营管理 (OM) 方法在制药业中的新应用。我们首先为运营管理研究人员介绍了医药制造,然后详细阐述了新兴技术、常见行业挑战和研究机会。我们解释了数据集,并提出了未来研究方向的路线图。欢迎研究人员使用该数据集研究提出的研究问题或分析其他研究问题:本文已作为 2024 年 MSOM 数据驱动研究挑战赛的一部分被接受:这项工作得到了荷兰研究理事会--NWO VIDI 基金的支持:在线附录见 https://doi.org/10.1287/msom.2024.0860
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Competition in Optimal Stopping: Behavioral Insights Information Dependency in Mitigating Disruption Cascades Adaptive Two-Stage Stochastic Programming with an Analysis on Capacity Expansion Planning Problem Demand Equilibria in Spatial Service Systems Optimal Salesforce Compensation with General Demand and Operational Considerations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1