{"title":"PointAS: an attention based sampling neural network for visual perception","authors":"Bozhi Qiu, Sheng Li, Lei Wang","doi":"10.3389/fncom.2024.1340019","DOIUrl":null,"url":null,"abstract":"Harnessing the remarkable ability of the human brain to recognize and process complex data is a significant challenge for researchers, particularly in the domain of point cloud classification—a technology that aims to replicate the neural structure of the brain for spatial recognition. The initial 3D point cloud data often suffers from noise, sparsity, and disorder, making accurate classification a formidable task, especially when extracting local information features. Therefore, in this study, we propose a novel attention-based end-to-end point cloud downsampling classification method, termed as PointAS, which is an experimental algorithm designed to be adaptable to various downstream tasks. PointAS consists of two primary modules: the adaptive sampling module and the attention module. Specifically, the attention module aggregates global features with the input point cloud data, while the adaptive module extracts local features. In the point cloud classification task, our method surpasses existing downsampling methods by a significant margin, allowing for more precise extraction of edge data points to capture overall contour features accurately. The classification accuracy of PointAS consistently exceeds 80% across various sampling ratios, with a remarkable accuracy of 75.37% even at ultra-high sampling ratios. Moreover, our method exhibits robustness in experiments, maintaining classification accuracies of 72.50% or higher under different noise disturbances. Both qualitative and quantitative experiments affirm the efficacy of our approach in the sampling classification task, providing researchers with a more accurate method to identify and classify neurons, synapses, and other structures, thereby promoting a deeper understanding of the nervous system.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1340019","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Harnessing the remarkable ability of the human brain to recognize and process complex data is a significant challenge for researchers, particularly in the domain of point cloud classification—a technology that aims to replicate the neural structure of the brain for spatial recognition. The initial 3D point cloud data often suffers from noise, sparsity, and disorder, making accurate classification a formidable task, especially when extracting local information features. Therefore, in this study, we propose a novel attention-based end-to-end point cloud downsampling classification method, termed as PointAS, which is an experimental algorithm designed to be adaptable to various downstream tasks. PointAS consists of two primary modules: the adaptive sampling module and the attention module. Specifically, the attention module aggregates global features with the input point cloud data, while the adaptive module extracts local features. In the point cloud classification task, our method surpasses existing downsampling methods by a significant margin, allowing for more precise extraction of edge data points to capture overall contour features accurately. The classification accuracy of PointAS consistently exceeds 80% across various sampling ratios, with a remarkable accuracy of 75.37% even at ultra-high sampling ratios. Moreover, our method exhibits robustness in experiments, maintaining classification accuracies of 72.50% or higher under different noise disturbances. Both qualitative and quantitative experiments affirm the efficacy of our approach in the sampling classification task, providing researchers with a more accurate method to identify and classify neurons, synapses, and other structures, thereby promoting a deeper understanding of the nervous system.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro