{"title":"Multi-objective Optimization-Oriented Generative Adversarial Design for Multi-principal Element Alloys","authors":"Z. Li, N. Birbilis","doi":"10.1007/s40192-024-00354-6","DOIUrl":null,"url":null,"abstract":"<p>The discovery of novel alloys, such as multi-principal element alloys (MPEAs)—inclusive of the so-called high-entropy alloys—remains essential for technological advancement. Multi-principal element alloys can manifest uniquely favorable mechanical properties, but the complexity of their compositions results in their design and performance being challenging to understand. With the emergence of the materials genome concept, there is potential to pursue novel materials using computational design approaches. However, the complexity of such design often requires immense computational power and sophisticated data analysis. In an attempt to address this, we introduce the application of a new framework, the non-dominant sorting optimization-based generative adversarial networks (NSGAN) in the discovery and exploration of novel MPEAs. By harnessing the power of genetic algorithms and generative adversarial networks (GANs), NSGANs offer an effective solution for high-dimensional multi-objective optimization challenges in alloy design. The framework is demonstrated to generate MPEAs according to specific alloy properties. Furthermore, an online web tool/software applies the NSGAN framework to disseminate the methodology to the broader scientific arena (along with the supporting code made available).</p>","PeriodicalId":13604,"journal":{"name":"Integrating Materials and Manufacturing Innovation","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrating Materials and Manufacturing Innovation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40192-024-00354-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The discovery of novel alloys, such as multi-principal element alloys (MPEAs)—inclusive of the so-called high-entropy alloys—remains essential for technological advancement. Multi-principal element alloys can manifest uniquely favorable mechanical properties, but the complexity of their compositions results in their design and performance being challenging to understand. With the emergence of the materials genome concept, there is potential to pursue novel materials using computational design approaches. However, the complexity of such design often requires immense computational power and sophisticated data analysis. In an attempt to address this, we introduce the application of a new framework, the non-dominant sorting optimization-based generative adversarial networks (NSGAN) in the discovery and exploration of novel MPEAs. By harnessing the power of genetic algorithms and generative adversarial networks (GANs), NSGANs offer an effective solution for high-dimensional multi-objective optimization challenges in alloy design. The framework is demonstrated to generate MPEAs according to specific alloy properties. Furthermore, an online web tool/software applies the NSGAN framework to disseminate the methodology to the broader scientific arena (along with the supporting code made available).
期刊介绍:
The journal will publish: Research that supports building a model-based definition of materials and processes that is compatible with model-based engineering design processes and multidisciplinary design optimization; Descriptions of novel experimental or computational tools or data analysis techniques, and their application, that are to be used for ICME; Best practices in verification and validation of computational tools, sensitivity analysis, uncertainty quantification, and data management, as well as standards and protocols for software integration and exchange of data; In-depth descriptions of data, databases, and database tools; Detailed case studies on efforts, and their impact, that integrate experiment and computation to solve an enduring engineering problem in materials and manufacturing.