Neutron diffraction: a primer

Richard Dronskowski, Thomas Brückel, Holger Kohlmann, Maxim Avdeev, Andreas Houben, Martin Meven, Michael Hofmann, Takashi Kamiyama, Mirijam Zobel, Werner Schweika, Raphaël P. Hermann, Asami Sano-Furukawa
{"title":"Neutron diffraction: a primer","authors":"Richard Dronskowski, Thomas Brückel, Holger Kohlmann, Maxim Avdeev, Andreas Houben, Martin Meven, Michael Hofmann, Takashi Kamiyama, Mirijam Zobel, Werner Schweika, Raphaël P. Hermann, Asami Sano-Furukawa","doi":"10.1515/zkri-2024-0001","DOIUrl":null,"url":null,"abstract":"Because of the neutron’s special properties, neutron diffraction may be considered one of the most powerful techniques for structure determination of crystalline and related matter. Neutrons can be released from nuclear fission, from spallation processes, and also from low-energy nuclear reactions, and they can then be used in powder, time-of-flight, texture, single crystal, and other techniques, all of which are perfectly suited to clarify crystal and magnetic structures. With high neutron flux and sufficient brilliance, neutron diffraction also excels for diffuse scattering, for <jats:italic>in situ</jats:italic> and <jats:italic>operando</jats:italic> studies as well as for high-pressure experiments of today’s materials. For these, the wave-like neutron’s infinite advantage (isotope specific, magnetic) is crucial to answering important scientific questions, for example, on the structure and dynamics of light atoms in energy conversion and storage materials, magnetic matter, or protein structures. In this primer, we summarize the current state of neutron diffraction (and how it came to be), but also look at recent advances and new ideas, e.g., the design of new instruments, and what follows from that.","PeriodicalId":23855,"journal":{"name":"Zeitschrift für Kristallographie - Crystalline Materials","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Kristallographie - Crystalline Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zkri-2024-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Because of the neutron’s special properties, neutron diffraction may be considered one of the most powerful techniques for structure determination of crystalline and related matter. Neutrons can be released from nuclear fission, from spallation processes, and also from low-energy nuclear reactions, and they can then be used in powder, time-of-flight, texture, single crystal, and other techniques, all of which are perfectly suited to clarify crystal and magnetic structures. With high neutron flux and sufficient brilliance, neutron diffraction also excels for diffuse scattering, for in situ and operando studies as well as for high-pressure experiments of today’s materials. For these, the wave-like neutron’s infinite advantage (isotope specific, magnetic) is crucial to answering important scientific questions, for example, on the structure and dynamics of light atoms in energy conversion and storage materials, magnetic matter, or protein structures. In this primer, we summarize the current state of neutron diffraction (and how it came to be), but also look at recent advances and new ideas, e.g., the design of new instruments, and what follows from that.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中子衍射:入门指南
由于中子的特殊性质,中子衍射可被视为确定晶体和相关物质结构的最强大技术之一。中子可从核裂变、剥落过程以及低能核反应中释放出来,然后可用于粉末、飞行时间、纹理、单晶和其他技术,所有这些技术都非常适合阐明晶体和磁性结构。凭借高中子通量和足够的亮度,中子衍射还可用于漫散射、原位和操作研究以及当今材料的高压实验。在这些方面,波状中子的无限优势(同位素特异性、磁性)对于回答重要的科学问题至关重要,例如能量转换和存储材料、磁性物质或蛋白质结构中轻原子的结构和动力学。在这本入门书中,我们总结了中子衍射的现状(以及它是如何诞生的),同时也探讨了最近的进展和新思路,例如新仪器的设计,以及由此产生的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis and crystal structure of a tripeptide comprising a centrally placed non-coded aromatic γ-amino acid 1-Nitronaphthalene, a non-OD, non-MDO polytype Crystal structure and tautomeric state of Pigment Red 48:2 from X-ray powder diffraction and solid-state NMR Mechanochemical synthesis of (Mg1−x Fe x )2SiO4 olivine phases relevant to Martian regolith: structural and spectroscopic characterizations The crystal and molecular structure of (R)-sirtinol – C26H22N2O2 – a chemo-sensitive enhancer and ligand in metal complexes with important bio-inorganic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1