Unmasking the common traits: an ensemble approach for effective malware detection

IF 2.4 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Information Security Pub Date : 2024-04-30 DOI:10.1007/s10207-024-00854-8
Parthajit Borah, Upasana Sarmah, D. K. Bhattacharyya, J. K. Kalita
{"title":"Unmasking the common traits: an ensemble approach for effective malware detection","authors":"Parthajit Borah, Upasana Sarmah, D. K. Bhattacharyya, J. K. Kalita","doi":"10.1007/s10207-024-00854-8","DOIUrl":null,"url":null,"abstract":"<p>Malware detection has become a critical aspect of ensuring the security and integrity of computer systems. With the ever-evolving landscape of malicious software, developing effective detection methods is of utmost importance. This study focuses on the identification of important features for malware detection methods, aiming to enhance the accuracy and efficiency of such systems. In this work, we propose an ensemble approach called FRAMC to identify the key features that contribute significantly to the detection of malware. The effectiveness of FRAMC is assessed using different types of classifiers on a number of real-world malware datasets. The outcomes of our analysis demonstrate that the proposed approach excels in terms of performance when compared to other methods.</p>","PeriodicalId":50316,"journal":{"name":"International Journal of Information Security","volume":"73 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Security","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10207-024-00854-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Malware detection has become a critical aspect of ensuring the security and integrity of computer systems. With the ever-evolving landscape of malicious software, developing effective detection methods is of utmost importance. This study focuses on the identification of important features for malware detection methods, aiming to enhance the accuracy and efficiency of such systems. In this work, we propose an ensemble approach called FRAMC to identify the key features that contribute significantly to the detection of malware. The effectiveness of FRAMC is assessed using different types of classifiers on a number of real-world malware datasets. The outcomes of our analysis demonstrate that the proposed approach excels in terms of performance when compared to other methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示共同特征:有效检测恶意软件的集合方法
恶意软件检测已成为确保计算机系统安全性和完整性的一个重要方面。随着恶意软件的不断发展,开发有效的检测方法至关重要。本研究侧重于识别恶意软件检测方法的重要特征,旨在提高此类系统的准确性和效率。在这项工作中,我们提出了一种名为 "FRAMC "的集合方法,用于识别对恶意软件检测有重大贡献的关键特征。我们在一些真实世界的恶意软件数据集上使用不同类型的分类器对 FRAMC 的有效性进行了评估。我们的分析结果表明,与其他方法相比,所提出的方法在性能方面表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Information Security
International Journal of Information Security 工程技术-计算机:理论方法
CiteScore
6.30
自引率
3.10%
发文量
52
审稿时长
12 months
期刊介绍: The International Journal of Information Security is an English language periodical on research in information security which offers prompt publication of important technical work, whether theoretical, applicable, or related to implementation. Coverage includes system security: intrusion detection, secure end systems, secure operating systems, database security, security infrastructures, security evaluation; network security: Internet security, firewalls, mobile security, security agents, protocols, anti-virus and anti-hacker measures; content protection: watermarking, software protection, tamper resistant software; applications: electronic commerce, government, health, telecommunications, mobility.
期刊最新文献
“Animation” URL in NFT marketplaces considered harmful for privacy An overview of proposals towards the privacy-preserving publication of trajectory data Enhancing privacy protections in national identification systems: an examination of stakeholders’ knowledge, attitudes, and practices of privacy by design An enhanced and verifiable lightweight authentication protocol for securing the Internet of Medical Things (IoMT) based on CP-ABE encryption Secure multi-party computation with legally-enforceable fairness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1