Exploring diffusion behavior of superionic materials using machine-learning interatomic potentials

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Physical Review Materials Pub Date : 2024-04-30 DOI:10.1103/physrevmaterials.8.043806
Cheng-Rong Hsing, Duc-Long Nguyen, Ching-Ming Wei
{"title":"Exploring diffusion behavior of superionic materials using machine-learning interatomic potentials","authors":"Cheng-Rong Hsing, Duc-Long Nguyen, Ching-Ming Wei","doi":"10.1103/physrevmaterials.8.043806","DOIUrl":null,"url":null,"abstract":"Superionic materials possess mobile atoms with liquidlike behavior in the rigid frameworks of other atoms. Theoretically, the diffusion behavior of the mobile atoms is usually probed by <i>ab initio</i> molecular dynamics simulations where enormous computing resources are requested for a complete thorough study. Thus, only limited cases are investigated without providing the most critical quantity, such as the diffusion barrier. To address this shortcoming, we perform molecular dynamics simulations based on machine-learning interatomic potentials, fitted from <i>ab initio</i> molecular dynamics simulations, to have complete studies for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Ag</mi><mn>2</mn></msub><mi mathvariant=\"normal\">S</mi></mrow><mo>,</mo><mo> </mo><mrow><msub><mi>Ag</mi><mn>8</mn></msub><msub><mi>SiTe</mi><mn>6</mn></msub></mrow><mo>,</mo><mo> </mo><mrow><msub><mi>Cu</mi><mn>2</mn></msub><mi mathvariant=\"normal\">S</mi></mrow></math>, and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Zn</mi><mrow><mn>3.6</mn><mo>+</mo><mi>x</mi></mrow></msub><msub><mi>Sb</mi><mn>3</mn></msub></mrow></math> systems. Our results indicate that the Arrhenius equation can describe very well the diffusion behaviors of the studied superionic systems where the activation barriers range from 0.09–0.22 eV. The small diffusion barrier provides the fundamental origin for the liquid behaviors of superionic materials.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":"36 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.043806","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Superionic materials possess mobile atoms with liquidlike behavior in the rigid frameworks of other atoms. Theoretically, the diffusion behavior of the mobile atoms is usually probed by ab initio molecular dynamics simulations where enormous computing resources are requested for a complete thorough study. Thus, only limited cases are investigated without providing the most critical quantity, such as the diffusion barrier. To address this shortcoming, we perform molecular dynamics simulations based on machine-learning interatomic potentials, fitted from ab initio molecular dynamics simulations, to have complete studies for Ag2S, Ag8SiTe6, Cu2S, and Zn3.6+xSb3 systems. Our results indicate that the Arrhenius equation can describe very well the diffusion behaviors of the studied superionic systems where the activation barriers range from 0.09–0.22 eV. The small diffusion barrier provides the fundamental origin for the liquid behaviors of superionic materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习原子间位势探索超离子材料的扩散行为
超离子材料拥有移动原子,它们在其他原子的刚性框架中具有类似液体的行为。从理论上讲,移动原子的扩散行为通常是通过ab initio分子动力学模拟来探测的,而要对其进行全面彻底的研究,需要大量的计算资源。因此,只能对有限的情况进行研究,而无法提供最关键的量,如扩散势垒。为了解决这一缺陷,我们基于机器学习原子间势进行了分子动力学模拟,并从非初始分子动力学模拟中拟合出了Ag2S、Ag8SiTe6、Cu2S和Zn3.6+xSb3系统的完整研究结果。研究结果表明,阿伦尼乌斯方程能很好地描述所研究的超离子体系的扩散行为,其活化势垒范围为 0.09-0.22 eV。较小的扩散势垒为超离子材料的液体行为提供了根本原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review Materials
Physical Review Materials Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
5.80
自引率
5.90%
发文量
611
期刊介绍: Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.
期刊最新文献
Impact of grain boundary energy anisotropy on grain growth Magnetization dependent anisotropic topological properties in EuCuP Fluorite-type materials in the monolayer limit Intrinsic origins of broad luminescence in melt-grown ZnGa2O4 single crystals Subjugating extensive magnetostructural temperature window and giant magnetocaloric effect in B-doped (MnNiSi)0.67(Fe2Ge)0.33 hexagonal system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1