S. Kiana Naghibzadeh, Zipeng Xu, David Kinderlehrer, Robert Suter, Kaushik Dayal, Gregory S. Rohrer
{"title":"Impact of grain boundary energy anisotropy on grain growth","authors":"S. Kiana Naghibzadeh, Zipeng Xu, David Kinderlehrer, Robert Suter, Kaushik Dayal, Gregory S. Rohrer","doi":"10.1103/physrevmaterials.8.093403","DOIUrl":null,"url":null,"abstract":"A threshold dynamics model of grain growth that accounts for the anisotropy in the grain boundary energy has been used to simulate experimentally observed grain growth of polycrystalline Ni. The simulation reproduces several aspects of the observed microstructural evolution that are not found in the results of simulations assuming isotropic properties. For example, the relative areas of the lowest-energy twin boundaries increase as the grains grow and the average grain boundary energy decreases with grain growth. This decrease in energy occurs because the population of higher-energy grain boundaries decreases while the population of lower-energy boundaries increases as the total grain boundary area decreases. This phenomenon emerges from the assumption of anisotropic grain boundary energies without modification of the energy minimizing algorithm. These findings are consistent with the observation that, in addition to the decrease in grain boundary area, additional energy is dissipated during grain growth by a decrease in the average grain boundary energy.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.093403","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A threshold dynamics model of grain growth that accounts for the anisotropy in the grain boundary energy has been used to simulate experimentally observed grain growth of polycrystalline Ni. The simulation reproduces several aspects of the observed microstructural evolution that are not found in the results of simulations assuming isotropic properties. For example, the relative areas of the lowest-energy twin boundaries increase as the grains grow and the average grain boundary energy decreases with grain growth. This decrease in energy occurs because the population of higher-energy grain boundaries decreases while the population of lower-energy boundaries increases as the total grain boundary area decreases. This phenomenon emerges from the assumption of anisotropic grain boundary energies without modification of the energy minimizing algorithm. These findings are consistent with the observation that, in addition to the decrease in grain boundary area, additional energy is dissipated during grain growth by a decrease in the average grain boundary energy.
期刊介绍:
Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.