High Sensitivity Magnetic Field Sensor Based on Magneto-Optical Surface Plasmon Resonance

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Journal Pub Date : 2024-04-30 DOI:10.1109/JSEN.2024.3393446
Zhenh Liu;Chonglei Zhang
{"title":"High Sensitivity Magnetic Field Sensor Based on Magneto-Optical Surface Plasmon Resonance","authors":"Zhenh Liu;Chonglei Zhang","doi":"10.1109/JSEN.2024.3393446","DOIUrl":null,"url":null,"abstract":"The magnetic field sensor plays a crucial role in various fields, we have designed and developed a phase magneto-optical surface plasmon resonance (MOSPR) magnetic field sensor. We obtained the optimal film structure and polarization state of incident light by using the multilayer film reflection theory and Jones matrix to improve the sensitivity. We propose and fabricate a novel Kretschmann configuration that angular modulation of incident light with total internal reflection instead of a mirror. The new Kretschmann configuration is conducive to sensitivity, volume, and light path adjustment during the experiment. According to the simulation consequence, we prepared the phase MOSPR sensor using electron beam vaporization of Au/Co/Au film on the new type Kretschmann configuration. Moreover, the transmission electron microscope (TEM) was used to determine the energy dispersive spectroscopy (EDS) mapping of film structure, which characterized the film elements and thickness. Additionally, the different signals in the system can significantly enhance the sensor’s signal-noise ratio (SNR). The experimental results (\n<inline-formula> <tex-math>$25~^{\\circ }$ </tex-math></inline-formula>\nC) based on the phase MOSPR sensor are consistent with the simulation consequence. The results have demonstrated that the phase MOSPR sensor exhibits high sensitivity (79310.3 oe/rad), ultrafast response time (< 100 ns), accuracy, and long-term stability. This sensor holds promise for applications in parameter detection in the automotive industry, navigation and positioning, geophysical magnetic fields, and environmental protection.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10516310/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The magnetic field sensor plays a crucial role in various fields, we have designed and developed a phase magneto-optical surface plasmon resonance (MOSPR) magnetic field sensor. We obtained the optimal film structure and polarization state of incident light by using the multilayer film reflection theory and Jones matrix to improve the sensitivity. We propose and fabricate a novel Kretschmann configuration that angular modulation of incident light with total internal reflection instead of a mirror. The new Kretschmann configuration is conducive to sensitivity, volume, and light path adjustment during the experiment. According to the simulation consequence, we prepared the phase MOSPR sensor using electron beam vaporization of Au/Co/Au film on the new type Kretschmann configuration. Moreover, the transmission electron microscope (TEM) was used to determine the energy dispersive spectroscopy (EDS) mapping of film structure, which characterized the film elements and thickness. Additionally, the different signals in the system can significantly enhance the sensor’s signal-noise ratio (SNR). The experimental results ( $25~^{\circ }$ C) based on the phase MOSPR sensor are consistent with the simulation consequence. The results have demonstrated that the phase MOSPR sensor exhibits high sensitivity (79310.3 oe/rad), ultrafast response time (< 100 ns), accuracy, and long-term stability. This sensor holds promise for applications in parameter detection in the automotive industry, navigation and positioning, geophysical magnetic fields, and environmental protection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于磁光表面等离子体共振的高灵敏度磁场传感器
磁场传感器在各个领域发挥着重要作用,我们设计并开发了一种相位磁光表面等离子体共振(MOSPR)磁场传感器。我们利用多层薄膜反射理论和琼斯矩阵获得了最佳薄膜结构和入射光的偏振态,从而提高了灵敏度。我们提出并制造了一种新颖的 Kretschmann 配置,它可以用全内部反射代替镜面对入射光进行角度调制。新的 Kretschmann 构造有利于在实验过程中调整灵敏度、体积和光路。根据模拟结果,我们在新型 Kretschmann 构造上利用电子束蒸发金/钴/金薄膜,制备了相位 MOSPR 传感器。此外,我们还利用透射电子显微镜(TEM)测定了薄膜结构的能量色散光谱(EDS)图,从而确定了薄膜的元素和厚度。此外,系统中的不同信号可显著提高传感器的信噪比(SNR)。基于相位 MOSPR 传感器的实验结果($25~^{\circ }$ C)与模拟结果一致。结果表明,相位 MOSPR 传感器具有高灵敏度(79310.3 oe/rad)、超快响应时间(< 100 ns)、精确度和长期稳定性。这种传感器有望应用于汽车工业参数检测、导航定位、地球物理磁场和环境保护等领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
期刊最新文献
Fault Diagnosis of Circuit Breakers Based on MCF-RPs and Deep Residual Knowledge Incremental under Distillation Learning Remaining Useful Life Prediction of Bearings Using Reverse Attention Graph Convolution Network with Residual Convolution Transformer Star Spot Extraction for Multi-FOV Star Sensors Under Extremely High Dynamic Conditions An Ultra-miniaturized Inflammation Monitoring Platform Implemented by Long Afterglow Lat-eral Flow Immunoassay Angle-Agnostic Radio Frequency Sensing Integrated into 5G-NR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1