Douglas A. G. Radford, Holger R. Maier, Hedwig van Delden, Aaron C. Zecchin, Amelie Jeanneau
{"title":"An efficient, multi-scale neighbourhood index to quantify wildfire likelihood","authors":"Douglas A. G. Radford, Holger R. Maier, Hedwig van Delden, Aaron C. Zecchin, Amelie Jeanneau","doi":"10.1071/wf23055","DOIUrl":null,"url":null,"abstract":"<strong> Background</strong><p>To effectively reduce future wildfire risk, several management strategies must be evaluated under plausible future scenarios, requiring models that provide estimates of how likely wildfires are to spread to community assets (wildfire likelihood) in a computationally efficient manner. Approaches to quantifying wildfire likelihood using fire simulation models cannot practically achieve this because they are too computationally expensive.</p><strong> Aim</strong><p>This study aimed to develop an approach for quantifying wildfire likelihood that is both computationally efficient and able to consider contagious and directionally specific fire behaviour properties across multiple spatial ‘neighbourhood’ scales.</p><strong> Methods</strong><p>A novel, computationally efficient index for quantifying wildfire likelihood is proposed. This index is evaluated against historical and simulated data on a case study in South Australia.</p><strong> Key results</strong><p>The neighbourhood index explains historical burnt areas and closely replicates patterns in burn probability calculated using landscape fire simulation (<i>ρ</i> = 0.83), while requiring 99.7% less computational time than the simulation-based model.</p><strong> Conclusions</strong><p>The neighbourhood index represents patterns in wildfire likelihood similar to those represented in burn probability, with a much-reduced computational time.</p><strong> Implications</strong><p>By using the index alongside existing approaches, managers can better explore problems involving many evaluations of wildfire likelihood, thereby improving planning processes and reducing future wildfire risks.</p>","PeriodicalId":14464,"journal":{"name":"International Journal of Wildland Fire","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Wildland Fire","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1071/wf23055","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
To effectively reduce future wildfire risk, several management strategies must be evaluated under plausible future scenarios, requiring models that provide estimates of how likely wildfires are to spread to community assets (wildfire likelihood) in a computationally efficient manner. Approaches to quantifying wildfire likelihood using fire simulation models cannot practically achieve this because they are too computationally expensive.
Aim
This study aimed to develop an approach for quantifying wildfire likelihood that is both computationally efficient and able to consider contagious and directionally specific fire behaviour properties across multiple spatial ‘neighbourhood’ scales.
Methods
A novel, computationally efficient index for quantifying wildfire likelihood is proposed. This index is evaluated against historical and simulated data on a case study in South Australia.
Key results
The neighbourhood index explains historical burnt areas and closely replicates patterns in burn probability calculated using landscape fire simulation (ρ = 0.83), while requiring 99.7% less computational time than the simulation-based model.
Conclusions
The neighbourhood index represents patterns in wildfire likelihood similar to those represented in burn probability, with a much-reduced computational time.
Implications
By using the index alongside existing approaches, managers can better explore problems involving many evaluations of wildfire likelihood, thereby improving planning processes and reducing future wildfire risks.
期刊介绍:
International Journal of Wildland Fire publishes new and significant articles that advance basic and applied research concerning wildland fire. Published papers aim to assist in the understanding of the basic principles of fire as a process, its ecological impact at the stand level and the landscape level, modelling fire and its effects, as well as presenting information on how to effectively and efficiently manage fire. The journal has an international perspective, since wildland fire plays a major social, economic and ecological role around the globe.
The International Journal of Wildland Fire is published on behalf of the International Association of Wildland Fire.