Doga CEDDEN, Gozde Guney, Xavier Debaisieux, Stefan Scholten, Michael Rostas, Gregor Bucher
{"title":"Effective target genes for RNA interference-based management of the cabbage stem flea beetle","authors":"Doga CEDDEN, Gozde Guney, Xavier Debaisieux, Stefan Scholten, Michael Rostas, Gregor Bucher","doi":"10.1101/2024.04.30.591975","DOIUrl":null,"url":null,"abstract":"The cabbage stem flea beetle (CSFB, Psylliodes chrysocephala) is a key pest of oilseed rape. The ban on neonicotinoids in the European Union due to environmental concerns and the emergence of pyrethroid-resistant populations have made the control of CSFB extremely challenging. In search of a solution, we have recently shown that RNA interference (RNAi) has potential in the management of CSFB. However, the previously tested target genes for RNAi-mediated pest control (subsequently called target genes) exhibited moderate and slow-acting lethal effects. In this study, 27 double-stranded RNAs (dsRNAs) were orally delivered to identify highly effective target genes in CSFB adults by leveraging the findings of a genome-wide RNAi screen in Tribolium castaneum. Our screen using 500 ng of dsRNA identified 10 moderately effective (> 50% mortality) and 4 highly effective target genes (100% mortality in 8-13 days). The latter mainly included proteasome subunits. RT-qPCR experiments confirmed target gene silencing and dose-response studies revealed LD50 values as low as ~20 ng in 14 days following a single exposure to dsRNA. Four highly effective dsRNAs also inhibited leaf damage (up to ~75%) and one affected locomotion. The sequences of promising target genes were subjected to in silico target prediction in non-target organisms, e.g., beneficials such as honeybees, to design environmentally friendly dsRNAs. Overall, the study provides valuable insights for the development of dsRNA-based insecticides against CSFB.","PeriodicalId":501575,"journal":{"name":"bioRxiv - Zoology","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Zoology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.04.30.591975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The cabbage stem flea beetle (CSFB, Psylliodes chrysocephala) is a key pest of oilseed rape. The ban on neonicotinoids in the European Union due to environmental concerns and the emergence of pyrethroid-resistant populations have made the control of CSFB extremely challenging. In search of a solution, we have recently shown that RNA interference (RNAi) has potential in the management of CSFB. However, the previously tested target genes for RNAi-mediated pest control (subsequently called target genes) exhibited moderate and slow-acting lethal effects. In this study, 27 double-stranded RNAs (dsRNAs) were orally delivered to identify highly effective target genes in CSFB adults by leveraging the findings of a genome-wide RNAi screen in Tribolium castaneum. Our screen using 500 ng of dsRNA identified 10 moderately effective (> 50% mortality) and 4 highly effective target genes (100% mortality in 8-13 days). The latter mainly included proteasome subunits. RT-qPCR experiments confirmed target gene silencing and dose-response studies revealed LD50 values as low as ~20 ng in 14 days following a single exposure to dsRNA. Four highly effective dsRNAs also inhibited leaf damage (up to ~75%) and one affected locomotion. The sequences of promising target genes were subjected to in silico target prediction in non-target organisms, e.g., beneficials such as honeybees, to design environmentally friendly dsRNAs. Overall, the study provides valuable insights for the development of dsRNA-based insecticides against CSFB.