Emotion Detection System for Malayalam Text using Deep Learning and Transformers

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE ACM Transactions on Asian and Low-Resource Language Information Processing Pub Date : 2024-05-01 DOI:10.1145/3663475
Anuja K, P. C. Reghu Raj, Remesh Babu K R
{"title":"Emotion Detection System for Malayalam Text using Deep Learning and Transformers","authors":"Anuja K, P. C. Reghu Raj, Remesh Babu K R","doi":"10.1145/3663475","DOIUrl":null,"url":null,"abstract":"<p>Recent advances in Natural Language Processing (NLP) have improved the performance of the systems that perform tasks, such as Emotion Detection (ED), Information Retrieval, Translation, etc., in resource-rich languages like English and Chinese. But similar advancements have not been made in Malayalam due to the dearth of annotated datasets. Because of its rich morphology, free word order and agglutinative character, data preparation in Malayalam is highly challenging. In this paper, we employ traditional Machine Learning (ML) techniques such as support vector machines (SVM) and multilayer perceptrons (MLP), and recent deep learning methods such as Recurrent Neural Networks (RNN) and advanced transformer-based methodologies to train an emotion detection system. This work stands out since all the previous attempts to extract emotions from Malayalam text have relied on lexicons, which are inappropriate for handling large amounts of data. By tweaking the hyperparameters, we enhanced the transformer-based model known as MuRIL to obtain an accuracy of 79%, which is then compared with the only state-of-the-art (SOTA) model. We found that the proposed techniques surpass the SOTA system available for detecting emotions in Malayalam reported so far.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3663475","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in Natural Language Processing (NLP) have improved the performance of the systems that perform tasks, such as Emotion Detection (ED), Information Retrieval, Translation, etc., in resource-rich languages like English and Chinese. But similar advancements have not been made in Malayalam due to the dearth of annotated datasets. Because of its rich morphology, free word order and agglutinative character, data preparation in Malayalam is highly challenging. In this paper, we employ traditional Machine Learning (ML) techniques such as support vector machines (SVM) and multilayer perceptrons (MLP), and recent deep learning methods such as Recurrent Neural Networks (RNN) and advanced transformer-based methodologies to train an emotion detection system. This work stands out since all the previous attempts to extract emotions from Malayalam text have relied on lexicons, which are inappropriate for handling large amounts of data. By tweaking the hyperparameters, we enhanced the transformer-based model known as MuRIL to obtain an accuracy of 79%, which is then compared with the only state-of-the-art (SOTA) model. We found that the proposed techniques surpass the SOTA system available for detecting emotions in Malayalam reported so far.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用深度学习和变换器的马拉雅拉姆语文本情感检测系统
自然语言处理(NLP)领域的最新进展提高了执行任务的系统性能,如在英语和中文等资源丰富的语言中执行情感检测(ED)、信息检索、翻译等任务。但由于缺乏注释数据集,马拉雅拉姆语还没有取得类似的进步。由于马拉雅拉姆语具有丰富的词形、自由词序和聚合特征,因此数据准备工作极具挑战性。在本文中,我们采用了传统的机器学习(ML)技术,如支持向量机(SVM)和多层感知器(MLP),以及最新的深度学习方法,如递归神经网络(RNN)和先进的基于变换器的方法来训练情绪检测系统。这项工作非常突出,因为之前从马拉雅拉姆语文本中提取情感的所有尝试都依赖于词典,而词典并不适合处理大量数据。通过调整超参数,我们增强了名为 MuRIL 的基于变换器的模型,从而获得了 79% 的准确率,并将其与唯一的最先进模型(SOTA)进行了比较。我们发现,所提出的技术超越了迄今为止所报道的用于检测马拉雅拉姆语情绪的 SOTA 系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
15.00%
发文量
241
期刊介绍: The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to: -Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc. -Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc. -Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition. -Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc. -Machine Translation involving Asian or low-resource languages. -Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc. -Information Extraction and Filtering: including automatic abstraction, user profiling, etc. -Speech processing: including text-to-speech synthesis and automatic speech recognition. -Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc. -Cross-lingual information processing involving Asian or low-resource languages. -Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.
期刊最新文献
Learning and Vision-based approach for Human fall detection and classification in naturally occurring scenes using video data A DENSE SPATIAL NETWORK MODEL FOR EMOTION RECOGNITION USING LEARNING APPROACHES CNN-Based Models for Emotion and Sentiment Analysis Using Speech Data TRGCN: A Prediction Model for Information Diffusion Based on Transformer and Relational Graph Convolutional Network Adaptive Semantic Information Extraction of Tibetan Opera Mask with Recall Loss
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1