Grid Cells in Cognition: Mechanisms and Function

IF 12.1 1区 医学 Q1 NEUROSCIENCES Annual review of neuroscience Pub Date : 2024-04-29 DOI:10.1146/annurev-neuro-101323-112047
Ling L. Dong, Ila R. Fiete
{"title":"Grid Cells in Cognition: Mechanisms and Function","authors":"Ling L. Dong, Ila R. Fiete","doi":"10.1146/annurev-neuro-101323-112047","DOIUrl":null,"url":null,"abstract":"The activity patterns of grid cells form distinctively regular triangular lattices over the explored spatial environment and are largely invariant to visual stimuli, animal movement, and environment geometry. These neurons present numerous fascinating challenges to the curious (neuro)scientist: What are the circuit mechanisms responsible for creating spatially periodic activity patterns from the monotonic input-output responses of single neurons? How and why does the brain encode a local, nonperiodic variable—the allocentric position of the animal—with a periodic, nonlocal code? And, are grid cells truly specialized for spatial computations? Otherwise, what is their role in general cognition more broadly? We review efforts in uncovering the mechanisms and functional properties of grid cells, highlighting recent progress in the experimental validation of mechanistic grid cell models, and discuss the coding properties and functional advantages of the grid code as suggested by continuous attractor network models of grid cells.","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"105 1","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-neuro-101323-112047","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The activity patterns of grid cells form distinctively regular triangular lattices over the explored spatial environment and are largely invariant to visual stimuli, animal movement, and environment geometry. These neurons present numerous fascinating challenges to the curious (neuro)scientist: What are the circuit mechanisms responsible for creating spatially periodic activity patterns from the monotonic input-output responses of single neurons? How and why does the brain encode a local, nonperiodic variable—the allocentric position of the animal—with a periodic, nonlocal code? And, are grid cells truly specialized for spatial computations? Otherwise, what is their role in general cognition more broadly? We review efforts in uncovering the mechanisms and functional properties of grid cells, highlighting recent progress in the experimental validation of mechanistic grid cell models, and discuss the coding properties and functional advantages of the grid code as suggested by continuous attractor network models of grid cells.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
认知中的网格细胞:机制与功能
网格细胞的活动模式在所探索的空间环境中形成独特的规则三角形网格,并且在很大程度上不受视觉刺激、动物运动和环境几何的影响。这些神经元给充满好奇心的(神经)科学家带来了许多令人着迷的挑战:从单个神经元的单调输入-输出反应中产生空间周期性活动模式的电路机制是什么?大脑是如何以及为何用周期性的非局部编码对局部非周期性变量--动物的分配中心位置--进行编码的?网格细胞真的专门用于空间计算吗?否则,它们在更广泛的一般认知中扮演什么角色?我们回顾了在揭示网格细胞的机制和功能特性方面所做的努力,重点介绍了在机制网格细胞模型的实验验证方面所取得的最新进展,并讨论了网格细胞连续吸引子网络模型所提出的网格代码的编码特性和功能优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of neuroscience
Annual review of neuroscience 医学-神经科学
CiteScore
25.30
自引率
0.70%
发文量
29
期刊介绍: The Annual Review of Neuroscience is a well-established and comprehensive journal in the field of neuroscience, with a rich history and a commitment to open access and scholarly communication. The journal has been in publication since 1978, providing a long-standing source of authoritative reviews in neuroscience. The Annual Review of Neuroscience encompasses a wide range of topics within neuroscience, including but not limited to: Molecular and cellular neuroscience, Neurogenetics, Developmental neuroscience, Neural plasticity and repair, Systems neuroscience, Cognitive neuroscience, Behavioral neuroscience, Neurobiology of disease. Occasionally, the journal also features reviews on the history of neuroscience and ethical considerations within the field.
期刊最新文献
Circuit Modules for Flexible Locomotion. Adaptive Cost-Benefit Control Fueled by Striatal Dopamine. A Whole-Brain Topographic Ontology. Harmony in the Molecular Orchestra of Hearing: Developmental Mechanisms from the Ear to the Brain. Circuit-Specific Deep Brain Stimulation Provides Insights into Movement Control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1