首页 > 最新文献

Annual review of neuroscience最新文献

英文 中文
Control Principles of Neural Dynamics Revealed by the Neurobiology of Timing.
IF 12.1 1区 医学 Q1 NEUROSCIENCES Pub Date : 2025-01-29 DOI: 10.1146/annurev-neuro-091724-015512
Gabriel M Stine, Mehrdad Jazayeri

Cognition unfolds dynamically over flexible timescales. A major goal of the field is to understand the computational and neurobiological principles that enable this flexibility. Here, we argue that the neurobiology of timing provides a platform for tackling these questions. We begin with an overview of proposed coding schemes for the representation of elapsed time, highlighting their computational properties. We then leverage the one-dimensional and unidirectional nature of time to highlight common principles across these coding schemes. These principles facilitate a precise formulation of questions related to the flexible control, variability, and calibration of neural dynamics. We review recent work that demonstrates how dynamical systems analysis of thalamocortical population activity in timing tasks has provided fundamental insights into how the brain calibrates and flexibly controls neural dynamics. We conclude with speculations about the architectural biases and neural substrates that support the control and calibration of neural dynamics more generally.

{"title":"Control Principles of Neural Dynamics Revealed by the Neurobiology of Timing.","authors":"Gabriel M Stine, Mehrdad Jazayeri","doi":"10.1146/annurev-neuro-091724-015512","DOIUrl":"https://doi.org/10.1146/annurev-neuro-091724-015512","url":null,"abstract":"<p><p>Cognition unfolds dynamically over flexible timescales. A major goal of the field is to understand the computational and neurobiological principles that enable this flexibility. Here, we argue that the neurobiology of timing provides a platform for tackling these questions. We begin with an overview of proposed coding schemes for the representation of elapsed time, highlighting their computational properties. We then leverage the one-dimensional and unidirectional nature of time to highlight common principles across these coding schemes. These principles facilitate a precise formulation of questions related to the flexible control, variability, and calibration of neural dynamics. We review recent work that demonstrates how dynamical systems analysis of thalamocortical population activity in timing tasks has provided fundamental insights into how the brain calibrates and flexibly controls neural dynamics. We conclude with speculations about the architectural biases and neural substrates that support the control and calibration of neural dynamics more generally.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":""},"PeriodicalIF":12.1,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circuit Modules for Flexible Locomotion.
IF 12.1 1区 医学 Q1 NEUROSCIENCES Pub Date : 2025-01-23 DOI: 10.1146/annurev-neuro-112723-061241
Laurence Picton, Irene Pallucchi, Pierre Fontanel, Maria Bertuzzi, Jianren Song, Abdeljabbar El Manira

Locomotion, like all behaviors, possesses an inherent flexibility that allows for the scaling of movement kinematic features, such as speed and vigor, in response to an ever-changing external world and internal drives. This flexibility is embedded in the organization of the spinal locomotor circuits, which encode and decode commands from the brainstem and proprioceptive feedback. This review highlights our current understanding of the modular organization of these locomotor circuits and how this modularity endows them with intrinsic mechanisms to adjust speed and vigor, thereby contributing to the flexibility of locomotor movements.

{"title":"Circuit Modules for Flexible Locomotion.","authors":"Laurence Picton, Irene Pallucchi, Pierre Fontanel, Maria Bertuzzi, Jianren Song, Abdeljabbar El Manira","doi":"10.1146/annurev-neuro-112723-061241","DOIUrl":"https://doi.org/10.1146/annurev-neuro-112723-061241","url":null,"abstract":"<p><p>Locomotion, like all behaviors, possesses an inherent flexibility that allows for the scaling of movement kinematic features, such as speed and vigor, in response to an ever-changing external world and internal drives. This flexibility is embedded in the organization of the spinal locomotor circuits, which encode and decode commands from the brainstem and proprioceptive feedback. This review highlights our current understanding of the modular organization of these locomotor circuits and how this modularity endows them with intrinsic mechanisms to adjust speed and vigor, thereby contributing to the flexibility of locomotor movements.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":""},"PeriodicalIF":12.1,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143027944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive Cost-Benefit Control Fueled by Striatal Dopamine. 纹状体多巴胺驱动的适应性成本-收益控制。
IF 12.1 1区 医学 Q1 NEUROSCIENCES Pub Date : 2025-01-15 DOI: 10.1146/annurev-neuro-112723-025228
Michael J Frank

The twenty-first century has brought forth a deluge of theories and data shedding light on the neural mechanisms of motivated behavior. Much of this progress has focused on dopaminergic dynamics, including their signaling properties (how do they vary with expectations and outcomes?) and their downstream impacts in target regions (how do they affect learning and behavior?). In parallel, the basal ganglia have been elevated from their original implication in motoric function to a canonical circuit facilitating the initiation, invigoration, and selection of actions across levels of abstraction, from motor to cognitive operations. This review considers how striatal D1 and D2 opponency allows animals to perform cost-benefit calculations across multiple scales: locally, whether to select a given action, and globally, whether to engage a particular corticostriatal circuit for guiding behavior. An emerging understanding of such functions reconciles seemingly conflicting data and has implications for neuroscience, psychology, behavioral economics, and artificial intelligence.

二十一世纪带来了大量的理论和数据,揭示了动机行为的神经机制。这些进展主要集中在多巴胺能动力学上,包括它们的信号特性(它们如何随着预期和结果而变化?)和它们在目标区域的下游影响(它们如何影响学习和行为?)。与此同时,基底神经节已经从最初的运动功能提升到一个规范的回路,促进从运动到认知操作的跨抽象水平的行动的启动、激活和选择。这篇综述考虑了纹状体D1和D2的对抗如何允许动物在多个尺度上进行成本效益计算:局部,是否选择给定的动作,以及全局,是否参与特定的皮质纹状体回路来指导行为。对这些功能的新兴理解调和了看似矛盾的数据,并对神经科学、心理学、行为经济学和人工智能产生了影响。
{"title":"Adaptive Cost-Benefit Control Fueled by Striatal Dopamine.","authors":"Michael J Frank","doi":"10.1146/annurev-neuro-112723-025228","DOIUrl":"https://doi.org/10.1146/annurev-neuro-112723-025228","url":null,"abstract":"<p><p>The twenty-first century has brought forth a deluge of theories and data shedding light on the neural mechanisms of motivated behavior. Much of this progress has focused on dopaminergic dynamics, including their signaling properties (how do they vary with expectations and outcomes?) and their downstream impacts in target regions (how do they affect learning and behavior?). In parallel, the basal ganglia have been elevated from their original implication in motoric function to a canonical circuit facilitating the initiation, invigoration, and selection of actions across levels of abstraction, from motor to cognitive operations. This review considers how striatal D1 and D2 opponency allows animals to perform cost-benefit calculations across multiple scales: locally, whether to select a given action, and globally, whether to engage a particular corticostriatal circuit for guiding behavior. An emerging understanding of such functions reconciles seemingly conflicting data and has implications for neuroscience, psychology, behavioral economics, and artificial intelligence.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":""},"PeriodicalIF":12.1,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circuit-Specific Deep Brain Stimulation Provides Insights into Movement Control. 特定回路的深部脑刺激为运动控制提供洞察力
IF 12.1 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-08-01 Epub Date: 2024-07-01 DOI: 10.1146/annurev-neuro-092823-104810
Aryn H Gittis, Roy V Sillitoe

Deep brain stimulation (DBS), a method in which electrical stimulation is delivered to specific areas of the brain, is an effective treatment for managing symptoms of a number of neurological and neuropsychiatric disorders. Clinical access to neural circuits during DBS provides an opportunity to study the functional link between neural circuits and behavior. This review discusses how the use of DBS in Parkinson's disease and dystonia has provided insights into the brain networks and physiological mechanisms that underlie motor control. In parallel, insights from basic science about how patterns of electrical stimulation impact plasticity and communication within neural circuits are transforming DBS from a therapy for treating symptoms to a therapy for treating circuits, with the goal of training the brain out of its diseased state.

深部脑刺激(DBS)是一种向大脑特定区域施加电刺激的方法,是控制多种神经和神经精神疾病症状的有效治疗方法。通过 DBS 对神经回路进行临床访问,为研究神经回路与行为之间的功能联系提供了机会。本综述讨论了 DBS 在帕金森病和肌张力障碍中的应用如何让人们深入了解运动控制的大脑网络和生理机制。与此同时,关于电刺激模式如何影响神经回路内的可塑性和交流的基础科学见解正在将 DBS 从治疗症状的疗法转变为治疗回路的疗法,目的是训练大脑摆脱病态。神经科学年刊》(Annual Review of Neuroscience)第 47 卷的最终在线出版日期预计为 2024 年 7 月。修订后的预计日期请参见 http://www.annualreviews.org/page/journal/pubdates。
{"title":"Circuit-Specific Deep Brain Stimulation Provides Insights into Movement Control.","authors":"Aryn H Gittis, Roy V Sillitoe","doi":"10.1146/annurev-neuro-092823-104810","DOIUrl":"10.1146/annurev-neuro-092823-104810","url":null,"abstract":"<p><p>Deep brain stimulation (DBS), a method in which electrical stimulation is delivered to specific areas of the brain, is an effective treatment for managing symptoms of a number of neurological and neuropsychiatric disorders. Clinical access to neural circuits during DBS provides an opportunity to study the functional link between neural circuits and behavior. This review discusses how the use of DBS in Parkinson's disease and dystonia has provided insights into the brain networks and physiological mechanisms that underlie motor control. In parallel, insights from basic science about how patterns of electrical stimulation impact plasticity and communication within neural circuits are transforming DBS from a therapy for treating symptoms to a therapy for treating circuits, with the goal of training the brain out of its diseased state.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":"63-83"},"PeriodicalIF":12.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harmony in the Molecular Orchestra of Hearing: Developmental Mechanisms from the Ear to the Brain. 听觉分子乐团的和谐:从耳朵到大脑的发育机制
IF 12.1 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-08-01 Epub Date: 2024-07-01 DOI: 10.1146/annurev-neuro-081423-093942
Sonja J Pyott, Gabriela Pavlinkova, Ebenezer N Yamoah, Bernd Fritzsch

Auditory processing in mammals begins in the peripheral inner ear and extends to the auditory cortex. Sound is transduced from mechanical stimuli into electrochemical signals of hair cells, which relay auditory information via the primary auditory neurons to cochlear nuclei. Information is subsequently processed in the superior olivary complex, lateral lemniscus, and inferior colliculus and projects to the auditory cortex via the medial geniculate body in the thalamus. Recent advances have provided valuable insights into the development and functioning of auditory structures, complementing our understanding of the physiological mechanisms underlying auditory processing. This comprehensive review explores the genetic mechanisms required for auditory system development from the peripheral cochlea to the auditory cortex. We highlight transcription factors and other genes with key recurring and interacting roles in guiding auditory system development and organization. Understanding these gene regulatory networks holds promise for developing novel therapeutic strategies for hearing disorders, benefiting millions globally.

哺乳动物的听觉处理始于外周内耳,并延伸至听觉皮层。声音从机械刺激转化为毛细胞的电化学信号,毛细胞通过初级听觉神经元将听觉信息传递到耳蜗核。信息随后在上橄榄复合体、外侧半月板和下丘进行处理,并通过丘脑的内侧膝状体投射到听皮层。最近的研究进展为我们了解听觉结构的发育和功能提供了宝贵的视角,补充了我们对听觉处理的生理机制的理解。本综述探讨了从外周耳蜗到听觉皮层的听觉系统发育所需的遗传机制。我们重点介绍了转录因子和其他基因,它们在引导听觉系统发育和组织过程中起着关键的循环和交互作用。了解这些基因调控网络有望开发出治疗听力障碍的新策略,造福全球数百万人。神经科学年刊》(Annual Review of Neuroscience)第 47 卷的最终在线出版日期预计为 2024 年 7 月。修订后的预计日期请参见 http://www.annualreviews.org/page/journal/pubdates。
{"title":"Harmony in the Molecular Orchestra of Hearing: Developmental Mechanisms from the Ear to the Brain.","authors":"Sonja J Pyott, Gabriela Pavlinkova, Ebenezer N Yamoah, Bernd Fritzsch","doi":"10.1146/annurev-neuro-081423-093942","DOIUrl":"10.1146/annurev-neuro-081423-093942","url":null,"abstract":"<p><p>Auditory processing in mammals begins in the peripheral inner ear and extends to the auditory cortex. Sound is transduced from mechanical stimuli into electrochemical signals of hair cells, which relay auditory information via the primary auditory neurons to cochlear nuclei. Information is subsequently processed in the superior olivary complex, lateral lemniscus, and inferior colliculus and projects to the auditory cortex via the medial geniculate body in the thalamus. Recent advances have provided valuable insights into the development and functioning of auditory structures, complementing our understanding of the physiological mechanisms underlying auditory processing. This comprehensive review explores the genetic mechanisms required for auditory system development from the peripheral cochlea to the auditory cortex. We highlight transcription factors and other genes with key recurring and interacting roles in guiding auditory system development and organization. Understanding these gene regulatory networks holds promise for developing novel therapeutic strategies for hearing disorders, benefiting millions globally.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":"1-20"},"PeriodicalIF":12.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787624/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139740214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cortical Layer-Dependent Signaling in Cognition: Three Computational Modes of the Canonical Circuit. 认知中依赖皮层的信号传递:典型回路的三种计算模式。
IF 12.1 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-08-01 DOI: 10.1146/annurev-neuro-081623-091311
Yasushi Miyashita

The cerebral cortex performs computations via numerous six-layer modules. The operational dynamics of these modules were studied primarily in early sensory cortices using bottom-up computation for response selectivity as a model, which has been recently revolutionized by genetic approaches in mice. However, cognitive processes such as recall and imagery require top-down generative computation. The question of whether the layered module operates similarly in top-down generative processing as in bottom-up sensory processing has become testable by advances in the layer identification of recorded neurons in behaving monkeys. This review examines recent advances in laminar signaling in these two computations, using predictive coding computation as a common reference, and shows that each of these computations recruits distinct laminar circuits, particularly in layer 5, depending on the cognitive demands. These findings highlight many open questions, including how different interareal feedback pathways, originating from and terminating at different layers, convey distinct functional signals.

大脑皮层通过众多六层模块进行计算。这些模块的运行动态主要是在早期感觉皮层中使用自下而上的反应选择性计算作为模型进行研究的。然而,回忆和想象等认知过程需要自上而下的生成性计算。分层模块在自上而下的生成处理过程中是否与自下而上的感官处理过程类似,这个问题已经可以通过对行为猴记录神经元的分层识别进行检验。这篇综述以预测编码计算为共同参照物,研究了这两种计算中层状信号传递的最新进展,结果表明,根据认知需求的不同,这两种计算都会招募不同的层状回路,尤其是第 5 层。这些发现凸显了许多悬而未决的问题,其中包括不同层间反馈通路如何传递不同的功能信号。
{"title":"Cortical Layer-Dependent Signaling in Cognition: Three Computational Modes of the Canonical Circuit.","authors":"Yasushi Miyashita","doi":"10.1146/annurev-neuro-081623-091311","DOIUrl":"10.1146/annurev-neuro-081623-091311","url":null,"abstract":"<p><p>The cerebral cortex performs computations via numerous six-layer modules. The operational dynamics of these modules were studied primarily in early sensory cortices using bottom-up computation for response selectivity as a model, which has been recently revolutionized by genetic approaches in mice. However, cognitive processes such as recall and imagery require top-down generative computation. The question of whether the layered module operates similarly in top-down generative processing as in bottom-up sensory processing has become testable by advances in the layer identification of recorded neurons in behaving monkeys. This review examines recent advances in laminar signaling in these two computations, using predictive coding computation as a common reference, and shows that each of these computations recruits distinct laminar circuits, particularly in layer 5, depending on the cognitive demands. These findings highlight many open questions, including how different interareal feedback pathways, originating from and terminating at different layers, convey distinct functional signals.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"47 1","pages":"211-234"},"PeriodicalIF":12.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural Control of Naturalistic Behavior Choices. 自然行为选择的神经控制
IF 12.1 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-08-01 Epub Date: 2024-07-01 DOI: 10.1146/annurev-neuro-111020-094019
Samuel K Asinof, Gwyneth M Card

In the natural world, animals make decisions on an ongoing basis, continuously selecting which action to undertake next. In the lab, however, the neural bases of decision processes have mostly been studied using artificial trial structures. New experimental tools based on the genetic toolkit of model organisms now make it experimentally feasible to monitor and manipulate neural activity in small subsets of neurons during naturalistic behaviors. We thus propose a new approach to investigating decision processes, termed reverse neuroethology. In this approach, experimenters select animal models based on experimental accessibility and then utilize cutting-edge tools such as connectomes and genetically encoded reagents to analyze the flow of information through an animal's nervous system during naturalistic choice behaviors. We describe how the reverse neuroethology strategy has been applied to understand the neural underpinnings of innate, rapid decision making, with a focus on defensive behavioral choices in the vinegar fly Drosophila melanogaster.

在自然界中,动物不断做出决策,不断选择下一步要采取的行动。然而,在实验室中,决策过程的神经基础大多是通过人工试验结构来研究的。现在,基于模式生物基因工具包的新实验工具使得在实验中监测和操纵自然行为过程中小神经元子集的神经活动变得可行。因此,我们提出了一种研究决策过程的新方法,即反向神经伦理学。在这种方法中,实验人员根据实验的可及性选择动物模型,然后利用连接组和基因编码试剂等尖端工具分析动物在自然选择行为中神经系统的信息流。我们将介绍如何应用反向神经伦理学策略来了解先天快速决策的神经基础,重点是醋蝇黑腹果蝇的防御行为选择。
{"title":"Neural Control of Naturalistic Behavior Choices.","authors":"Samuel K Asinof, Gwyneth M Card","doi":"10.1146/annurev-neuro-111020-094019","DOIUrl":"10.1146/annurev-neuro-111020-094019","url":null,"abstract":"<p><p>In the natural world, animals make decisions on an ongoing basis, continuously selecting which action to undertake next. In the lab, however, the neural bases of decision processes have mostly been studied using artificial trial structures. New experimental tools based on the genetic toolkit of model organisms now make it experimentally feasible to monitor and manipulate neural activity in small subsets of neurons during naturalistic behaviors. We thus propose a new approach to investigating decision processes, termed reverse neuroethology. In this approach, experimenters select animal models based on experimental accessibility and then utilize cutting-edge tools such as connectomes and genetically encoded reagents to analyze the flow of information through an animal's nervous system during naturalistic choice behaviors. We describe how the reverse neuroethology strategy has been applied to understand the neural underpinnings of innate, rapid decision making, with a focus on defensive behavioral choices in the vinegar fly <i>Drosophila melanogaster</i>.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":"369-388"},"PeriodicalIF":12.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140896891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predictive Processing: A Circuit Approach to Psychosis. 预测处理:治疗精神病的电路方法。
IF 12.1 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-08-01 Epub Date: 2024-07-01 DOI: 10.1146/annurev-neuro-100223-121214
Georg B Keller, Philipp Sterzer

Predictive processing is a computational framework that aims to explain how the brain processes sensory information by making predictions about the environment and minimizing prediction errors. It can also be used to explain some of the key symptoms of psychotic disorders such as schizophrenia. In recent years, substantial advances have been made in our understanding of the neuronal circuitry that underlies predictive processing in cortex. In this review, we summarize these findings and how they might relate to psychosis and to observed cell type-specific effects of antipsychotic drugs. We argue that quantifying the effects of antipsychotic drugs on specific neuronal circuit elements is a promising approach to understanding not only the mechanism of action of antipsychotic drugs but also psychosis. Finally, we outline some of the key experiments that should be done. The aims of this review are to provide an overview of the current circuit-based approaches to psychosis and to encourage further research in this direction.

预测处理是一种计算框架,旨在解释大脑如何通过对环境进行预测并尽量减少预测误差来处理感官信息。它也可以用来解释精神分裂症等精神疾病的一些主要症状。近年来,我们对大脑皮层中支持预测处理的神经元回路的了解取得了长足的进步。在这篇综述中,我们总结了这些发现,以及它们与精神病和所观察到的抗精神病药物的细胞特异性效应之间的关系。我们认为,量化抗精神病药物对特定神经元回路元素的影响,不仅是了解抗精神病药物作用机制的一种有前途的方法,也是了解精神病的一种有前途的方法。最后,我们概述了应该进行的一些关键实验。本综述旨在概述目前基于回路的精神病研究方法,并鼓励在此方向开展进一步研究。神经科学年度评论》第 47 卷的最终在线出版日期预计为 2024 年 7 月。修订后的预计日期请参见 http://www.annualreviews.org/page/journal/pubdates。
{"title":"Predictive Processing: A Circuit Approach to Psychosis.","authors":"Georg B Keller, Philipp Sterzer","doi":"10.1146/annurev-neuro-100223-121214","DOIUrl":"10.1146/annurev-neuro-100223-121214","url":null,"abstract":"<p><p>Predictive processing is a computational framework that aims to explain how the brain processes sensory information by making predictions about the environment and minimizing prediction errors. It can also be used to explain some of the key symptoms of psychotic disorders such as schizophrenia. In recent years, substantial advances have been made in our understanding of the neuronal circuitry that underlies predictive processing in cortex. In this review, we summarize these findings and how they might relate to psychosis and to observed cell type-specific effects of antipsychotic drugs. We argue that quantifying the effects of antipsychotic drugs on specific neuronal circuit elements is a promising approach to understanding not only the mechanism of action of antipsychotic drugs but also psychosis. Finally, we outline some of the key experiments that should be done. The aims of this review are to provide an overview of the current circuit-based approaches to psychosis and to encourage further research in this direction.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":"85-101"},"PeriodicalIF":12.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Whole-Brain Topographic Ontology. 全脑拓扑本体论
IF 12.1 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-08-01 Epub Date: 2024-07-01 DOI: 10.1146/annurev-neuro-082823-073701
Michael Arcaro, Margaret Livingstone

It is a common view that the intricate array of specialized domains in the ventral visual pathway is innately prespecified. What this review postulates is that it is not. We explore the origins of domain specificity, hypothesizing that the adult brain emerges from an interplay between a domain-general map-based architecture, shaped by intrinsic mechanisms, and experience. We argue that the most fundamental innate organization of cortex in general, and not just the visual pathway, is a map-based topography that governs how the environment maps onto the brain, how brain areas interconnect, and ultimately, how the brain processes information.

人们普遍认为,腹侧视觉通路中错综复杂的特化域是先天预设的。这篇综述假设它们并非如此。我们探讨了领域特异性的起源,假设成人大脑是由内在机制塑造的基于领域通用图谱的结构与经验相互作用而产生的。我们认为,不仅是视觉通路,整个大脑皮层最基本的先天组织结构是一种基于地图的地形图,它支配着环境如何映射到大脑、大脑区域如何相互连接,以及最终大脑如何处理信息。神经科学年评》第 47 卷的最终在线出版日期预计为 2024 年 7 月。修订后的预计日期请参见 http://www.annualreviews.org/page/journal/pubdates。
{"title":"A Whole-Brain Topographic Ontology.","authors":"Michael Arcaro, Margaret Livingstone","doi":"10.1146/annurev-neuro-082823-073701","DOIUrl":"10.1146/annurev-neuro-082823-073701","url":null,"abstract":"<p><p>It is a common view that the intricate array of specialized domains in the ventral visual pathway is innately prespecified. What this review postulates is that it is not. We explore the origins of domain specificity, hypothesizing that the adult brain emerges from an interplay between a domain-general map-based architecture, shaped by intrinsic mechanisms, and experience. We argue that the most fundamental innate organization of cortex in general, and not just the visual pathway, is a map-based topography that governs how the environment maps onto the brain, how brain areas interconnect, and ultimately, how the brain processes information.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":"21-40"},"PeriodicalIF":12.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139740213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Grid Cells in Cognition: Mechanisms and Function 认知中的网格细胞:机制与功能
IF 13.9 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-04-29 DOI: 10.1146/annurev-neuro-101323-112047
Ling L. Dong, Ila R. Fiete
The activity patterns of grid cells form distinctively regular triangular lattices over the explored spatial environment and are largely invariant to visual stimuli, animal movement, and environment geometry. These neurons present numerous fascinating challenges to the curious (neuro)scientist: What are the circuit mechanisms responsible for creating spatially periodic activity patterns from the monotonic input-output responses of single neurons? How and why does the brain encode a local, nonperiodic variable—the allocentric position of the animal—with a periodic, nonlocal code? And, are grid cells truly specialized for spatial computations? Otherwise, what is their role in general cognition more broadly? We review efforts in uncovering the mechanisms and functional properties of grid cells, highlighting recent progress in the experimental validation of mechanistic grid cell models, and discuss the coding properties and functional advantages of the grid code as suggested by continuous attractor network models of grid cells.
网格细胞的活动模式在所探索的空间环境中形成独特的规则三角形网格,并且在很大程度上不受视觉刺激、动物运动和环境几何的影响。这些神经元给充满好奇心的(神经)科学家带来了许多令人着迷的挑战:从单个神经元的单调输入-输出反应中产生空间周期性活动模式的电路机制是什么?大脑是如何以及为何用周期性的非局部编码对局部非周期性变量--动物的分配中心位置--进行编码的?网格细胞真的专门用于空间计算吗?否则,它们在更广泛的一般认知中扮演什么角色?我们回顾了在揭示网格细胞的机制和功能特性方面所做的努力,重点介绍了在机制网格细胞模型的实验验证方面所取得的最新进展,并讨论了网格细胞连续吸引子网络模型所提出的网格代码的编码特性和功能优势。
{"title":"Grid Cells in Cognition: Mechanisms and Function","authors":"Ling L. Dong, Ila R. Fiete","doi":"10.1146/annurev-neuro-101323-112047","DOIUrl":"https://doi.org/10.1146/annurev-neuro-101323-112047","url":null,"abstract":"The activity patterns of grid cells form distinctively regular triangular lattices over the explored spatial environment and are largely invariant to visual stimuli, animal movement, and environment geometry. These neurons present numerous fascinating challenges to the curious (neuro)scientist: What are the circuit mechanisms responsible for creating spatially periodic activity patterns from the monotonic input-output responses of single neurons? How and why does the brain encode a local, nonperiodic variable—the allocentric position of the animal—with a periodic, nonlocal code? And, are grid cells truly specialized for spatial computations? Otherwise, what is their role in general cognition more broadly? We review efforts in uncovering the mechanisms and functional properties of grid cells, highlighting recent progress in the experimental validation of mechanistic grid cell models, and discuss the coding properties and functional advantages of the grid code as suggested by continuous attractor network models of grid cells.","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"105 1","pages":""},"PeriodicalIF":13.9,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Annual review of neuroscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1