Jing Ye, Xiyu Huang, Manman Yuan, Jinglin Wang, Ru Jia, Tianyi Wang, Yang Tan, Shun Zhu, Qiang Xu, Xingxin Wu
{"title":"HSD17B13 liquid–liquid phase separation promotes leukocyte adhesion in chronic liver inflammation","authors":"Jing Ye, Xiyu Huang, Manman Yuan, Jinglin Wang, Ru Jia, Tianyi Wang, Yang Tan, Shun Zhu, Qiang Xu, Xingxin Wu","doi":"10.1093/jmcb/mjae018","DOIUrl":null,"url":null,"abstract":"The rs72613567:TA polymorphism in 17-beta hydroxysteroid dehydrogenase 13 (HSD17B13) has been found to reduce the progression from steatosis to nonalcoholic steatohepatitis. In this study, we sought to define the pathogenic role of HSD17B13 in triggering liver inflammation. Here we find that HSD17B13 forms liquid–liquid phase separation (LLPS) around lipid droplets in the livers of nonalcoholic steatohepatitis patients. The dimerization of HSD17B13 supports the LLPS formation and promotes its enzymatic function. HSD17B13 LLPS increases the biosynthesis of platelet activating factor (PAF), which in turn promotes fibrinogen synthesis and leukocyte adhesion. Blockade of PAFR or STAT3 pathway inhibited the fibrinogen synthesis and leukocyte adhesion. Importantly, adeno-associated viral-mediated xeno-expression of human HSD17B13 exacerbated western diet/carbon tetrachloride-induced liver inflammation in Hsd17b13−/− mice. In conclusion, our results suggest that HSD17B13 LLPS triggers liver inflammation by promoting PAF-mediated leukocyte adhesion, and targeting HSD17B13 phase transition could be a promising therapeutic approach for treating hepatic inflammation in chronic liver disease.","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":"11 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmcb/mjae018","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The rs72613567:TA polymorphism in 17-beta hydroxysteroid dehydrogenase 13 (HSD17B13) has been found to reduce the progression from steatosis to nonalcoholic steatohepatitis. In this study, we sought to define the pathogenic role of HSD17B13 in triggering liver inflammation. Here we find that HSD17B13 forms liquid–liquid phase separation (LLPS) around lipid droplets in the livers of nonalcoholic steatohepatitis patients. The dimerization of HSD17B13 supports the LLPS formation and promotes its enzymatic function. HSD17B13 LLPS increases the biosynthesis of platelet activating factor (PAF), which in turn promotes fibrinogen synthesis and leukocyte adhesion. Blockade of PAFR or STAT3 pathway inhibited the fibrinogen synthesis and leukocyte adhesion. Importantly, adeno-associated viral-mediated xeno-expression of human HSD17B13 exacerbated western diet/carbon tetrachloride-induced liver inflammation in Hsd17b13−/− mice. In conclusion, our results suggest that HSD17B13 LLPS triggers liver inflammation by promoting PAF-mediated leukocyte adhesion, and targeting HSD17B13 phase transition could be a promising therapeutic approach for treating hepatic inflammation in chronic liver disease.
期刊介绍:
The Journal of Molecular Cell Biology ( JMCB ) is a full open access, peer-reviewed online journal interested in inter-disciplinary studies at the cross-sections between molecular and cell biology as well as other disciplines of life sciences. The broad scope of JMCB reflects the merging of these life science disciplines such as stem cell research, signaling, genetics, epigenetics, genomics, development, immunology, cancer biology, molecular pathogenesis, neuroscience, and systems biology. The journal will publish primary research papers with findings of unusual significance and broad scientific interest. Review articles, letters and commentary on timely issues are also welcome.
JMCB features an outstanding Editorial Board, which will serve as scientific advisors to the journal and provide strategic guidance for the development of the journal. By selecting only the best papers for publication, JMCB will provide a first rate publishing forum for scientists all over the world.