Aiman Hina, Muhammad Khuram Razzaq, Asim Abbasi, Muhamad Basit Shehzad, Muhammad Arshad, Tayyaba Sanaullah, Kamran Arshad, Ghulam Raza, Hayssam M. Ali, Faisal Hayat, Naeem Akhtar, Nader R. Abdelsalam
{"title":"Genomic blueprints of soybean (Glycine max) pathogen resistance: revealing the key genes for sustainable agriculture","authors":"Aiman Hina, Muhammad Khuram Razzaq, Asim Abbasi, Muhamad Basit Shehzad, Muhammad Arshad, Tayyaba Sanaullah, Kamran Arshad, Ghulam Raza, Hayssam M. Ali, Faisal Hayat, Naeem Akhtar, Nader R. Abdelsalam","doi":"10.1071/fp23295","DOIUrl":null,"url":null,"abstract":"<p>Soybean (<i>Glycine max</i>) is an important oilseed, protein and biodiesel crop. It faces significant threats from bacterial, fungal and viral pathogens, which cause economic losses and jeopardises global food security. In this article, we explore the relationship between soybeans and these pathogens, focusing on the molecular responses that are crucial for soybeans defence mechanisms. Molecular responses involve small RNAs and specific genes, including resistance (R) genes that are pivotal in triggering immune responses. Functional genomics, which makes use of cutting-edge technologies, such as CRISPR Cas9 gene editing, allows us to identify genes that provide insights into the defence mechanisms of soybeans with the focus on using genomics to understand the mechanisms involved in host pathogen interactions and ultimately improve the resilience of soybeans. Genes like <i>GmKR3</i> and <i>GmVQ58</i> have demonstrated resistance against soybean mosaic virus and common cutworm, respectively. Genetic studies have identified quantitative trait loci (QTLs) including those linked with soybean cyst nematode, root-knot nematode and <i>Phytophthora</i> root and stem rot resistance. Additionally, resistance against Asian soybean rust and soybean cyst nematode involves specific genes and their variations in terms of different copy numbers. To address the challenges posed by evolving pathogens and meet the demands of a growing population, accelerated soybean breeding efforts leveraging functional genomics are imperative. Targeted breeding strategies based on a deeper understanding of soybean gene function and regulation will enhance disease resistance, ensuring sustainable agriculture and global food security. Collaborative research and continued technological advancements are crucial for securing a resilient and productive agricultural future.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"91 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/fp23295","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Soybean (Glycine max) is an important oilseed, protein and biodiesel crop. It faces significant threats from bacterial, fungal and viral pathogens, which cause economic losses and jeopardises global food security. In this article, we explore the relationship between soybeans and these pathogens, focusing on the molecular responses that are crucial for soybeans defence mechanisms. Molecular responses involve small RNAs and specific genes, including resistance (R) genes that are pivotal in triggering immune responses. Functional genomics, which makes use of cutting-edge technologies, such as CRISPR Cas9 gene editing, allows us to identify genes that provide insights into the defence mechanisms of soybeans with the focus on using genomics to understand the mechanisms involved in host pathogen interactions and ultimately improve the resilience of soybeans. Genes like GmKR3 and GmVQ58 have demonstrated resistance against soybean mosaic virus and common cutworm, respectively. Genetic studies have identified quantitative trait loci (QTLs) including those linked with soybean cyst nematode, root-knot nematode and Phytophthora root and stem rot resistance. Additionally, resistance against Asian soybean rust and soybean cyst nematode involves specific genes and their variations in terms of different copy numbers. To address the challenges posed by evolving pathogens and meet the demands of a growing population, accelerated soybean breeding efforts leveraging functional genomics are imperative. Targeted breeding strategies based on a deeper understanding of soybean gene function and regulation will enhance disease resistance, ensuring sustainable agriculture and global food security. Collaborative research and continued technological advancements are crucial for securing a resilient and productive agricultural future.
期刊介绍:
Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance.
Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.