A Basic Overview of Various Stochastic Approaches to Financial Modeling With Examples

Aashrit Cunchala
{"title":"A Basic Overview of Various Stochastic Approaches to Financial Modeling With Examples","authors":"Aashrit Cunchala","doi":"arxiv-2405.01397","DOIUrl":null,"url":null,"abstract":"This paper explores stochastic modeling approaches to elucidate the intricate\ndynamics of stock prices and volatility in financial markets. Beginning with an\noverview of Brownian motion and its historical significance in finance, we\ndelve into various stochastic models, including the classic Black-Scholes\nframework, the Heston model, fractional Brownian motion, GARCH models, and Levy\nprocesses. Through a thorough investigation, we analyze the strengths and\nlimitations of each model in capturing key features of financial time series\ndata. Our empirical analysis focuses on parameter estimation and model\ncalibration using Levy processes, demonstrating their effectiveness in\npredicting stock returns. However, we acknowledge the need for further\nrefinement and exploration, suggesting potential avenues for future research,\nsuch as hybrid modeling approaches. Overall, this study underscores the\nimportance of stochastic modeling in understanding market dynamics and informs\ndecision-making in the financial industry.","PeriodicalId":501462,"journal":{"name":"arXiv - MATH - History and Overview","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - History and Overview","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.01397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores stochastic modeling approaches to elucidate the intricate dynamics of stock prices and volatility in financial markets. Beginning with an overview of Brownian motion and its historical significance in finance, we delve into various stochastic models, including the classic Black-Scholes framework, the Heston model, fractional Brownian motion, GARCH models, and Levy processes. Through a thorough investigation, we analyze the strengths and limitations of each model in capturing key features of financial time series data. Our empirical analysis focuses on parameter estimation and model calibration using Levy processes, demonstrating their effectiveness in predicting stock returns. However, we acknowledge the need for further refinement and exploration, suggesting potential avenues for future research, such as hybrid modeling approaches. Overall, this study underscores the importance of stochastic modeling in understanding market dynamics and informs decision-making in the financial industry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
附示例的各种财务建模随机方法基本概述
本文探讨了随机建模方法,以阐明金融市场中股票价格和波动的复杂动态。本文从布朗运动及其在金融学中的历史意义开始,深入探讨了各种随机模型,包括经典的布莱克-斯科尔斯框架、海斯顿模型、分数布朗运动、GARCH 模型和列维过程。通过深入研究,我们分析了每种模型在捕捉金融时间序列数据关键特征方面的优势和局限。我们的实证分析侧重于使用 Levy 过程进行参数估计和模型校准,证明了它们在预测股票收益方面的有效性。不过,我们也承认需要进一步完善和探索,并提出了未来研究的潜在途径,如混合建模方法。总之,本研究强调了随机建模在理解市场动态和为金融业决策提供信息方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Roger Godement et les fonctions de type positif Winning Lights Out with Fibonacci A Mathematical Model of The Effects of Strike On Nigerian Universities Generalized Carlos Scales Samgamagrāma Mādhava: An Updated Biography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1