Yang Wang , Yuqiang Fang , Ruiqi Wang , Fuqiang Huang
{"title":"Infrared nonlinear optical materials with multiple strongly ionic cations","authors":"Yang Wang , Yuqiang Fang , Ruiqi Wang , Fuqiang Huang","doi":"10.1016/j.progsolidstchem.2024.100458","DOIUrl":null,"url":null,"abstract":"<div><p>Infrared nonlinear optical (IR-NLO) crystals with excellent properties are in extensive demand due to their important role in IR laser technology. Currently, it remains a great challenge to obtain IR-NLO materials with both high second harmonic generation (SHG) response and large laser-induced damage thresholds (LIDTs). Some structural design strategies such as ‘structural/functional regions’ have been adopted to develop new high-performance NLO materials. The covalent structural region producing SHG signals has been extensively investigated, whereas the hard cations (alkali, alkaline-earth, and rare-earth metal ions) which are responsible for improving LIDTs, have been relatively neglected. Utilizing the concept of structural/functional regions, we focus on the relation between structural regions and SHG properties in chalcogenides. Combining different kinds of hard cations can change the dimension of structures and affect the stacking of NLO-active groups. Introducing more hard cations and constructing more complex ion regions help to increase the laser damage threshold. Based on the mentioned structural strategies, guidance will be provided for developing high-performance multiple-cation materials for IR NLO applications.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"74 ","pages":"Article 100458"},"PeriodicalIF":9.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079678624000219/pdfft?md5=8a3e327efe2d716595740419f2a2437c&pid=1-s2.0-S0079678624000219-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079678624000219","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Infrared nonlinear optical (IR-NLO) crystals with excellent properties are in extensive demand due to their important role in IR laser technology. Currently, it remains a great challenge to obtain IR-NLO materials with both high second harmonic generation (SHG) response and large laser-induced damage thresholds (LIDTs). Some structural design strategies such as ‘structural/functional regions’ have been adopted to develop new high-performance NLO materials. The covalent structural region producing SHG signals has been extensively investigated, whereas the hard cations (alkali, alkaline-earth, and rare-earth metal ions) which are responsible for improving LIDTs, have been relatively neglected. Utilizing the concept of structural/functional regions, we focus on the relation between structural regions and SHG properties in chalcogenides. Combining different kinds of hard cations can change the dimension of structures and affect the stacking of NLO-active groups. Introducing more hard cations and constructing more complex ion regions help to increase the laser damage threshold. Based on the mentioned structural strategies, guidance will be provided for developing high-performance multiple-cation materials for IR NLO applications.
期刊介绍:
Progress in Solid State Chemistry offers critical reviews and specialized articles written by leading experts in the field, providing a comprehensive view of solid-state chemistry. It addresses the challenge of dispersed literature by offering up-to-date assessments of research progress and recent developments. Emphasis is placed on the relationship between physical properties and structural chemistry, particularly imperfections like vacancies and dislocations. The reviews published in Progress in Solid State Chemistry emphasize critical evaluation of the field, along with indications of current problems and future directions. Papers are not intended to be bibliographic in nature but rather to inform a broad range of readers in an inherently multidisciplinary field by providing expert treatises oriented both towards specialists in different areas of the solid state and towards nonspecialists. The authorship is international, and the subject matter will be of interest to chemists, materials scientists, physicists, metallurgists, crystallographers, ceramists, and engineers interested in the solid state.