{"title":"Mining local and global spatiotemporal features for tactile object recognition","authors":"Xiaoliang Qian, Wei Deng, Wei Wang, Yucui Liu, Liying Jiang","doi":"10.3389/fnbot.2024.1387428","DOIUrl":null,"url":null,"abstract":"The tactile object recognition (TOR) is highly important for environmental perception of robots. The previous works usually utilize single scale convolution which cannot simultaneously extract local and global spatiotemporal features of tactile data, which leads to low accuracy in TOR task. To address above problem, this article proposes a local and global residual (LGR-18) network which is mainly consisted of multiple local and global convolution (LGC) blocks. An LGC block contains two pairs of local convolution (LC) and global convolution (GC) modules. The LC module mainly utilizes a temporal shift operation and a 2D convolution layer to extract local spatiotemporal features. The GC module extracts global spatiotemporal features by fusing multiple 1D and 2D convolutions which can expand the receptive field in temporal and spatial dimensions. Consequently, our LGR-18 network can extract local-global spatiotemporal features without using 3D convolutions which usually require a large number of parameters. The effectiveness of LC module, GC module and LGC block is verified by ablation studies. Quantitative comparisons with state-of-the-art methods reveal the excellent capability of our method.","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"27 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1387428","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The tactile object recognition (TOR) is highly important for environmental perception of robots. The previous works usually utilize single scale convolution which cannot simultaneously extract local and global spatiotemporal features of tactile data, which leads to low accuracy in TOR task. To address above problem, this article proposes a local and global residual (LGR-18) network which is mainly consisted of multiple local and global convolution (LGC) blocks. An LGC block contains two pairs of local convolution (LC) and global convolution (GC) modules. The LC module mainly utilizes a temporal shift operation and a 2D convolution layer to extract local spatiotemporal features. The GC module extracts global spatiotemporal features by fusing multiple 1D and 2D convolutions which can expand the receptive field in temporal and spatial dimensions. Consequently, our LGR-18 network can extract local-global spatiotemporal features without using 3D convolutions which usually require a large number of parameters. The effectiveness of LC module, GC module and LGC block is verified by ablation studies. Quantitative comparisons with state-of-the-art methods reveal the excellent capability of our method.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.