Enhanced High Voltage Stability of Spinel‐Type Structured LiNi0.5Mn1.5O4 Electrodes: Targeted Octahedral Crystal Site Modification

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Batteries & Supercaps Pub Date : 2024-05-02 DOI:10.1002/batt.202400123
Jinshuo Zou, Gemeng Liang, Shilin Zhang, Lars Thomsen, Yameng Fan, Wei Kong Pang, Zaiping Guo, Vanessa Kate Peterson
{"title":"Enhanced High Voltage Stability of Spinel‐Type Structured LiNi0.5Mn1.5O4 Electrodes: Targeted Octahedral Crystal Site Modification","authors":"Jinshuo Zou, Gemeng Liang, Shilin Zhang, Lars Thomsen, Yameng Fan, Wei Kong Pang, Zaiping Guo, Vanessa Kate Peterson","doi":"10.1002/batt.202400123","DOIUrl":null,"url":null,"abstract":"High‐voltage spinel‐type structured LiNi0.5Mn1.5O4 (LNMO) shows promise as a next‐generation high‐energy‐density lithium‐ion battery cathode material, however, capacity decay on extended cycling hinders its widespread adoption, underscoring an urgent need for further development. In this work, we introduce Zn at octahedral 16c crystal sites in LNMO with Fd‐3m space group to improve rate capability and reduce the rapid capacity decay otherwise experienced during extended cycling. The current work resolves the detailed influence of isolated modification at octahedral 16c crystal sites, unveiling the mechanism for these performance improvements. We show that occupation of Zn at previously empty 16c sites prevents the migration of Ni/Mn to adjacent 16c sites, eliminating transformation to a rock‐salt type structured Ni0.25Mn0.75O2 phase above 4.8 V, preventing structure degradation and suppressing voltage polarization. This study provides insights into the fundamental structure‐function relationship of the LNMO battery cathode, pointing to pathways for the crystal structure engineering of materials with superior performance.","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/batt.202400123","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

High‐voltage spinel‐type structured LiNi0.5Mn1.5O4 (LNMO) shows promise as a next‐generation high‐energy‐density lithium‐ion battery cathode material, however, capacity decay on extended cycling hinders its widespread adoption, underscoring an urgent need for further development. In this work, we introduce Zn at octahedral 16c crystal sites in LNMO with Fd‐3m space group to improve rate capability and reduce the rapid capacity decay otherwise experienced during extended cycling. The current work resolves the detailed influence of isolated modification at octahedral 16c crystal sites, unveiling the mechanism for these performance improvements. We show that occupation of Zn at previously empty 16c sites prevents the migration of Ni/Mn to adjacent 16c sites, eliminating transformation to a rock‐salt type structured Ni0.25Mn0.75O2 phase above 4.8 V, preventing structure degradation and suppressing voltage polarization. This study provides insights into the fundamental structure‐function relationship of the LNMO battery cathode, pointing to pathways for the crystal structure engineering of materials with superior performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强尖晶石型结构镍钴锰酸锂电极的高压稳定性:有针对性的八面体晶体位点修饰
高压尖晶石型结构 LiNi0.5Mn1.5O4(LNMO)有望成为下一代高能量密度锂离子电池正极材料,但其在长时间循环过程中的容量衰减阻碍了其广泛应用,因此迫切需要进一步开发。在这项研究中,我们在具有 Fd-3m 空间群的 LNMO 的八面体 16c 晶位上引入了 Zn,以提高速率能力并减少延长循环过程中的快速容量衰减。目前的研究工作解决了八面体 16c 晶位孤立修饰的详细影响,揭示了这些性能改进的机理。我们的研究表明,锌占据了以前空的 16c 晶位,阻止了镍/锰向相邻 16c 晶位的迁移,消除了向 4.8 V 以上的岩盐型结构 Ni0.25Mn0.75O2 相的转变,防止了结构退化并抑制了电压极化。这项研究深入揭示了 LNMO 电池正极的基本结构-功能关系,为具有卓越性能的材料晶体结构工程指明了方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
期刊最新文献
Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution Flame-Retardant Polymer Electrolyte for Sodium-Ion Batteries On the Selection of the Current Collector for Water Processed Activated Carbon Electrodes for their Application in Electrochemical Capacitors Statistical Analysis of Solid Electrolyte Interface Formation: Correlation of Gas Composition, Electrochemical Data and Performance Effect of Synthesis Conditions on the Composition, Local Structure and Electrochemical Behavior of (Cr,Fe,Mn,Co,Ni)3O4 Anode Material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1