Controlled wettability of biphilic patterned surfaces for enhanced atmospheric water harvesting

IF 2.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Micro and Nano Engineering Pub Date : 2024-04-30 DOI:10.1016/j.mne.2024.100255
Joyce Estephan, Marie Panabière, Camille Petit-Etienne, Sebastien Labau, Léo Bon, Jean-Hervé Tortai, Cécile Gourgon
{"title":"Controlled wettability of biphilic patterned surfaces for enhanced atmospheric water harvesting","authors":"Joyce Estephan,&nbsp;Marie Panabière,&nbsp;Camille Petit-Etienne,&nbsp;Sebastien Labau,&nbsp;Léo Bon,&nbsp;Jean-Hervé Tortai,&nbsp;Cécile Gourgon","doi":"10.1016/j.mne.2024.100255","DOIUrl":null,"url":null,"abstract":"<div><p>Water is a vital component for all living organisms, yet persistent water scarcity remains a global challenge. One potential solution lies in replicating the atmospheric water collection mechanism observed in the Stenocara beetle, characterized by a dorsal surface featuring alternating hydrophilic and hydrophobic regions. In this study, we have designed and examined two distinct biphilic patterned surface configurations, integrating various technologies, to mimic the beetle's water collection strategy. Our investigation evaluates the efficiency of these surfaces in both capturing water from fog and condensing water from dew. For fog collection two parameters were the most impactful: the roughness and the wettability contrast between hydrophilic and hydrophobic zones. In contrast, dew condensation was influenced by additional parameters notably the patterns' size and density that directly affect the water contact angle. It is worth noting, however, that the optimal surface for fog collection may not necessarily coincide with the most effective surface for dew condensation. Furthermore, our research includes a comparative analysis between the theoretically predicted volume of water droplet departure and the empirically observed results.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100255"},"PeriodicalIF":2.8000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000182/pdfft?md5=ceffce399788bdc2ff24b6d2f8ce8bee&pid=1-s2.0-S2590007224000182-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590007224000182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Water is a vital component for all living organisms, yet persistent water scarcity remains a global challenge. One potential solution lies in replicating the atmospheric water collection mechanism observed in the Stenocara beetle, characterized by a dorsal surface featuring alternating hydrophilic and hydrophobic regions. In this study, we have designed and examined two distinct biphilic patterned surface configurations, integrating various technologies, to mimic the beetle's water collection strategy. Our investigation evaluates the efficiency of these surfaces in both capturing water from fog and condensing water from dew. For fog collection two parameters were the most impactful: the roughness and the wettability contrast between hydrophilic and hydrophobic zones. In contrast, dew condensation was influenced by additional parameters notably the patterns' size and density that directly affect the water contact angle. It is worth noting, however, that the optimal surface for fog collection may not necessarily coincide with the most effective surface for dew condensation. Furthermore, our research includes a comparative analysis between the theoretically predicted volume of water droplet departure and the empirically observed results.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
控制双亲图案表面的润湿性,增强大气集水能力
水是所有生物的重要组成部分,但持续缺水仍是一个全球性挑战。一种潜在的解决方案是复制在 Stenocara 甲虫身上观察到的大气水收集机制,这种机制的特点是背部表面具有交替的亲水和疏水区域。在这项研究中,我们设计并研究了两种不同的双亲图案表面配置,并整合了各种技术,以模仿甲虫的集水策略。我们的研究评估了这些表面在捕捉雾水和凝结露水方面的效率。对于雾的收集,有两个参数影响最大:粗糙度以及亲水区和疏水区之间的润湿性对比。相比之下,露水的凝结则受到其他参数的影响,特别是直接影响水接触角的图案大小和密度。但值得注意的是,雾气收集的最佳表面不一定与露水凝结的最有效表面一致。此外,我们的研究还包括理论预测的水滴离开体积与经验观察结果之间的比较分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Micro and Nano Engineering
Micro and Nano Engineering Engineering-Electrical and Electronic Engineering
CiteScore
3.30
自引率
0.00%
发文量
67
审稿时长
80 days
期刊最新文献
Laser-engraved holograms as entropy source for random number generators Developments in the design and microfabrication of photovoltaic retinal implants Enhanced plasma etching using nonlinear parameter evolution Low-frequency electromagnetic harvester for wind turbine vibrations From ghost to state-of-the-art process corrections – PEC enabled e-beam nanofabrication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1