Daoliang Lan, Wei Fu, Wenhui Ji, Tserang-Donko Mipam, Xianrong Xiong, Shi Ying, Yan Xiong, Peng Sheng, Jiangping Ni, Lijun Bai, Tongling Shan, Xiangdong Kong, Jian Li
{"title":"Pangenome and multi-tissue gene atlas provide new insights into the domestication and highland adaptation of yaks","authors":"Daoliang Lan, Wei Fu, Wenhui Ji, Tserang-Donko Mipam, Xianrong Xiong, Shi Ying, Yan Xiong, Peng Sheng, Jiangping Ni, Lijun Bai, Tongling Shan, Xiangdong Kong, Jian Li","doi":"10.1186/s40104-024-01027-2","DOIUrl":null,"url":null,"abstract":"The genetic diversity of yak, a key domestic animal on the Qinghai-Tibetan Plateau (QTP), is a vital resource for domestication and breeding efforts. This study presents the first yak pangenome obtained through the de novo assembly of 16 yak genomes. We discovered 290 Mb of nonreference sequences and 504 new genes. Our pangenome-wide presence and absence variation (PAV) analysis revealed 5,120 PAV-related genes, highlighting a wide range of variety-specific genes and genes with varying frequencies across yak populations. Principal component analysis (PCA) based on binary gene PAV data classified yaks into three new groups: wild, domestic, and Jinchuan. Moreover, we proposed a ‘two-haplotype genomic hybridization model’ for understanding the hybridization patterns among breeds by integrating gene frequency, heterozygosity, and gene PAV data. A gene PAV-GWAS identified a novel gene (BosGru3G009179) that may be associated with the multirib trait in Jinchuan yaks. Furthermore, an integrated transcriptome and pangenome analysis highlighted the significant differences in the expression of core genes and the mutational burden of differentially expressed genes between yaks from high and low altitudes. Transcriptome analysis across multiple species revealed that yaks have the most unique differentially expressed mRNAs and lncRNAs (between high- and low-altitude regions), especially in the heart and lungs, when comparing high- and low-altitude adaptations. The yak pangenome offers a comprehensive resource and new insights for functional genomic studies, supporting future biological research and breeding strategies.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"18 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s40104-024-01027-2","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The genetic diversity of yak, a key domestic animal on the Qinghai-Tibetan Plateau (QTP), is a vital resource for domestication and breeding efforts. This study presents the first yak pangenome obtained through the de novo assembly of 16 yak genomes. We discovered 290 Mb of nonreference sequences and 504 new genes. Our pangenome-wide presence and absence variation (PAV) analysis revealed 5,120 PAV-related genes, highlighting a wide range of variety-specific genes and genes with varying frequencies across yak populations. Principal component analysis (PCA) based on binary gene PAV data classified yaks into three new groups: wild, domestic, and Jinchuan. Moreover, we proposed a ‘two-haplotype genomic hybridization model’ for understanding the hybridization patterns among breeds by integrating gene frequency, heterozygosity, and gene PAV data. A gene PAV-GWAS identified a novel gene (BosGru3G009179) that may be associated with the multirib trait in Jinchuan yaks. Furthermore, an integrated transcriptome and pangenome analysis highlighted the significant differences in the expression of core genes and the mutational burden of differentially expressed genes between yaks from high and low altitudes. Transcriptome analysis across multiple species revealed that yaks have the most unique differentially expressed mRNAs and lncRNAs (between high- and low-altitude regions), especially in the heart and lungs, when comparing high- and low-altitude adaptations. The yak pangenome offers a comprehensive resource and new insights for functional genomic studies, supporting future biological research and breeding strategies.
期刊介绍:
Journal of Animal Science and Biotechnology is an open access, peer-reviewed journal that encompasses all aspects of animal science and biotechnology. That includes domestic animal production, animal genetics and breeding, animal reproduction and physiology, animal nutrition and biochemistry, feed processing technology and bioevaluation, animal biotechnology, and meat science.