Qiuyan Wang, Daobing Wang, Bo Yu, Dongliang Sun, Yongliang Wang, Nai Hao, Dongxu Han
{"title":"Evolution of Elastic–Plastic Characteristics of Rocks Within Middle-Deep Geothermal Reservoirs Under High Temperature","authors":"Qiuyan Wang, Daobing Wang, Bo Yu, Dongliang Sun, Yongliang Wang, Nai Hao, Dongxu Han","doi":"10.1007/s11053-024-10342-4","DOIUrl":null,"url":null,"abstract":"<p>Middle-deep geothermal reservoirs, rich in energy, experience deep burial, high temperature, and intense three-dimensional stresses, causing noticeable elastic–plastic rock deformation under high confining pressure. However, existing researches primarily focused on elastic–plastic properties under various confining pressures, overlooking the impact of high temperature on granite’s behavior. To address this, we conducted compression experiments at seven temperature points (25–600 °C) under varying confining pressures (0–15 MPa). The results reveal that increasing confining pressure prolongs the plastic yielding stage, linearly enhances compressive strength, and shifts rupture mode from brittle to expansion shear damage. Conversely, under constant confining pressure, compressive strength decreases with rising temperature, accompanied by more intricate artificial cracks. Rock cohesion, internal friction angle, and wave velocity decrease due to increased thermal damage micro-cracks. Heat treatment over 500 °C significantly increases porosity and pore throat radius, explaining heightened plasticity in hot dry rocks. These findings offer theoretical and technical insights for understanding elastic–plastic fracture mechanisms during hydraulic fracturing in middle-deep geothermal reservoirs and enhancing heat recovery efficiency.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"13 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10342-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Middle-deep geothermal reservoirs, rich in energy, experience deep burial, high temperature, and intense three-dimensional stresses, causing noticeable elastic–plastic rock deformation under high confining pressure. However, existing researches primarily focused on elastic–plastic properties under various confining pressures, overlooking the impact of high temperature on granite’s behavior. To address this, we conducted compression experiments at seven temperature points (25–600 °C) under varying confining pressures (0–15 MPa). The results reveal that increasing confining pressure prolongs the plastic yielding stage, linearly enhances compressive strength, and shifts rupture mode from brittle to expansion shear damage. Conversely, under constant confining pressure, compressive strength decreases with rising temperature, accompanied by more intricate artificial cracks. Rock cohesion, internal friction angle, and wave velocity decrease due to increased thermal damage micro-cracks. Heat treatment over 500 °C significantly increases porosity and pore throat radius, explaining heightened plasticity in hot dry rocks. These findings offer theoretical and technical insights for understanding elastic–plastic fracture mechanisms during hydraulic fracturing in middle-deep geothermal reservoirs and enhancing heat recovery efficiency.
期刊介绍:
This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.