Kevin Debatisse, Pierre Lopez, Maryse Poli, Philippe Rousseau, Manuel Campos, Michèle Coddeville, Muriel Cocaign‐Bousquet, Pascal Le Bourgeois
{"title":"Redefining the bacteriophage mv4 site‐specific recombination system and the sequence specificity of its attB and core‐attP sites","authors":"Kevin Debatisse, Pierre Lopez, Maryse Poli, Philippe Rousseau, Manuel Campos, Michèle Coddeville, Muriel Cocaign‐Bousquet, Pascal Le Bourgeois","doi":"10.1111/mmi.15275","DOIUrl":null,"url":null,"abstract":"Through their involvement in the integration and excision of a large number of mobile genetic elements, such as phages and integrative and conjugative elements (ICEs), site‐specific recombination systems based on heterobivalent tyrosine recombinases play a major role in genome dynamics and evolution. However, despite hundreds of these systems having been identified in genome databases, very few have been described in detail, with none from phages that infect <jats:italic>Bacillota</jats:italic> (formerly <jats:italic>Firmicutes</jats:italic>). In this study, we reanalyzed the recombination module of <jats:italic>Lactobacillus delbrueckii</jats:italic> subsp. <jats:italic>bulgaricus</jats:italic> phage mv4, previously considered atypical compared with classical systems. Our results reveal that mv4 integrase is a 369 aa protein with all the structural hallmarks of recombinases from the Tn<jats:italic>916</jats:italic> family and that it cooperatively interacts with its recombination sites. Using randomized DNA libraries, NGS sequencing, and other molecular approaches, we show that the 21‐bp core‐<jats:italic>attP</jats:italic> and <jats:italic>attB</jats:italic> sites have structural similarities to classical systems only if considering the nucleotide degeneracy, with two 7‐bp inverted regions corresponding to <jats:sup>mv4</jats:sup>Int core‐binding sites surrounding a 7‐bp strand‐exchange region. We also examined the different compositional constraints in the core‐binding regions, which define the sequence space of permissible recombination sites.","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":"161 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.15275","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Through their involvement in the integration and excision of a large number of mobile genetic elements, such as phages and integrative and conjugative elements (ICEs), site‐specific recombination systems based on heterobivalent tyrosine recombinases play a major role in genome dynamics and evolution. However, despite hundreds of these systems having been identified in genome databases, very few have been described in detail, with none from phages that infect Bacillota (formerly Firmicutes). In this study, we reanalyzed the recombination module of Lactobacillus delbrueckii subsp. bulgaricus phage mv4, previously considered atypical compared with classical systems. Our results reveal that mv4 integrase is a 369 aa protein with all the structural hallmarks of recombinases from the Tn916 family and that it cooperatively interacts with its recombination sites. Using randomized DNA libraries, NGS sequencing, and other molecular approaches, we show that the 21‐bp core‐attP and attB sites have structural similarities to classical systems only if considering the nucleotide degeneracy, with two 7‐bp inverted regions corresponding to mv4Int core‐binding sites surrounding a 7‐bp strand‐exchange region. We also examined the different compositional constraints in the core‐binding regions, which define the sequence space of permissible recombination sites.
期刊介绍:
Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses.
Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.