Gut microbial alterations in arginine metabolism determine bone mechanical adaptation

IF 27.7 1区 生物学 Q1 CELL BIOLOGY Cell metabolism Pub Date : 2024-05-07 DOI:10.1016/j.cmet.2024.04.004
Dan Wang, Jing Cai, Qilin Pei, Zedong Yan, Feng Zhu, Zhe Zhao, Ruobing Liu, Xiangyang Guo, Tao Sun, Juan Liu, Yulan Tian, Hongbo Liu, Xi Shao, Jinghui Huang, Xiaoxia Hao, Qi Chang, Zhuojing Luo, Da Jing
{"title":"Gut microbial alterations in arginine metabolism determine bone mechanical adaptation","authors":"Dan Wang, Jing Cai, Qilin Pei, Zedong Yan, Feng Zhu, Zhe Zhao, Ruobing Liu, Xiangyang Guo, Tao Sun, Juan Liu, Yulan Tian, Hongbo Liu, Xi Shao, Jinghui Huang, Xiaoxia Hao, Qi Chang, Zhuojing Luo, Da Jing","doi":"10.1016/j.cmet.2024.04.004","DOIUrl":null,"url":null,"abstract":"<p>Although mechanical loading is essential for maintaining bone health and combating osteoporosis, its practical application is limited to a large extent by the high variability in bone mechanoresponsiveness. Here, we found that gut microbial depletion promoted a significant reduction in skeletal adaptation to mechanical loading. Among experimental mice, we observed differences between those with high and low responses to exercise with respect to the gut microbial composition, in which the differential abundance of <em>Lachnospiraceae</em> contributed to the differences in bone mechanoresponsiveness. Microbial production of L-citrulline and its conversion into L-arginine were identified as key regulators of bone mechanoadaptation, and administration of these metabolites enhanced bone mechanoresponsiveness in normal, aged, and ovariectomized mice. Mechanistically, L-arginine-mediated enhancement of bone mechanoadaptation was primarily attributable to the activation of a nitric-oxide-calcium positive feedback loop in osteocytes. This study identifies a promising anti-osteoporotic strategy for maximizing mechanical loading-induced skeletal benefits via the microbiota-metabolite axis.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"46 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2024.04.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Although mechanical loading is essential for maintaining bone health and combating osteoporosis, its practical application is limited to a large extent by the high variability in bone mechanoresponsiveness. Here, we found that gut microbial depletion promoted a significant reduction in skeletal adaptation to mechanical loading. Among experimental mice, we observed differences between those with high and low responses to exercise with respect to the gut microbial composition, in which the differential abundance of Lachnospiraceae contributed to the differences in bone mechanoresponsiveness. Microbial production of L-citrulline and its conversion into L-arginine were identified as key regulators of bone mechanoadaptation, and administration of these metabolites enhanced bone mechanoresponsiveness in normal, aged, and ovariectomized mice. Mechanistically, L-arginine-mediated enhancement of bone mechanoadaptation was primarily attributable to the activation of a nitric-oxide-calcium positive feedback loop in osteocytes. This study identifies a promising anti-osteoporotic strategy for maximizing mechanical loading-induced skeletal benefits via the microbiota-metabolite axis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
精氨酸代谢中的肠道微生物变化决定骨机械适应性
尽管机械负荷对维持骨骼健康和防治骨质疏松症至关重要,但由于骨骼对机械负荷的适应性存在很大差异,其实际应用在很大程度上受到限制。在这里,我们发现肠道微生物耗竭会显著降低骨骼对机械负荷的适应性。在实验小鼠中,我们观察到肠道微生物组成对运动反应高和反应低的小鼠之间存在差异,其中Lachnospiraceae的丰度差异导致了骨骼机械反应性的差异。微生物产生的L-瓜氨酸及其转化为L-精氨酸被认为是骨机械适应性的关键调节因子,给正常小鼠、老龄小鼠和卵巢切除小鼠服用这些代谢物可提高骨机械反应性。从机理上讲,L-精氨酸介导的骨机械适应性增强主要归因于骨细胞中一氧化氮-钙正反馈环路的激活。这项研究发现了一种很有前景的抗骨质疏松策略,即通过微生物群-代谢物轴最大限度地提高机械负荷诱导的骨骼益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
Sigma
Acetonitrile
¥25.00~¥340116.43
Sigma
Sigma
Formic acid
¥25.00~¥153438.80
Sigma
Sigma
Sigma
Sigma
Collagenase II
¥110.00~¥68781.41
Sigma
Sigma
L-citrulline
¥21.00~¥29970.56
Sigma
Acetic acid
¥15.00~¥21945.73
Sigma
Ascorbic acid
¥15.00~¥20675.84
上海源叶
Sigma
Sigma
Toluidine blue
¥44.00~¥16752.86
Sigma
methylmethacrylate
¥20.00~¥14218.00
上海源叶
Sigma
Sigma
Alizarin red
¥37.00~¥13340.00
上海源叶
Metronidazole
¥12.00~¥13237.00
Sigma
Metronidazole
¥12.00~¥13237.00
Sigma
Ammonium formate
¥14.00~¥12375.00
Sigma
β-glycerophosphate
¥20.00~¥11799.00
上海源叶
Vancomycin
¥42.00~¥9897.00
Sigma
Vancomycin
¥42.00~¥9897.00
Sigma
Sigma
Sulfosalicylic acid
¥31.00~¥6754.00
Sigma
Sigma
Sigma
Probenecid
¥20.00~¥3346.00
Sigma
Sigma
Corn starch
Sigma
Pluronic acid F-127
Sigma
Brain heart infusion broth
Sigma
Takara Ex Taq?
Sigma
PBS
Sigma
Rat tail collagen type I
Sigma
L-NAME
Sigma
Dantrolene
Sigma
αMEM
Sigma
Calbryte-520 AM
Sigma
Rankl
Sigma
DMEM
Sigma
INF-γ
Sigma
4% paraformaldehyde |4%
Sigma
Penicillin/streptomycin
Sigma
Fetal bovine serum
Sigma
αMEM, no phenol red
Sigma
Calf serum
来源期刊
Cell metabolism
Cell metabolism 生物-内分泌学与代谢
CiteScore
48.60
自引率
1.40%
发文量
173
审稿时长
2.5 months
期刊介绍: Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others. Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.
期刊最新文献
A key role of PIEZO2 mechanosensitive ion channel in adipose sensory innervation “Shunt-ing” down obesity with novel endogenous metabolites On the causes of obesity and its treatment: The end of the beginning Decoding the complex systems of obesity Ferroptosis in adipose tissue: A promising pathway for treating obesity?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1