Improved Mechanical Strength without Sacrificing Li-Ion Transport in Polymer Electrolytes

IF 5.1 Q1 POLYMER SCIENCE ACS Macro Letters Pub Date : 2024-05-06 DOI:10.1021/acsmacrolett.4c00158
James T. Bamford, Seamus D. Jones, Nicole S. Schauser, Benjamin J. Pedretti, Leo W. Gordon, Nathaniel A. Lynd, Raphaële J. Clément, Rachel A. Segalman
{"title":"Improved Mechanical Strength without Sacrificing Li-Ion Transport in Polymer Electrolytes","authors":"James T. Bamford, Seamus D. Jones, Nicole S. Schauser, Benjamin J. Pedretti, Leo W. Gordon, Nathaniel A. Lynd, Raphaële J. Clément, Rachel A. Segalman","doi":"10.1021/acsmacrolett.4c00158","DOIUrl":null,"url":null,"abstract":"Next-generation batteries demand solid polymer electrolytes (SPEs) with rapid ion transport and robust mechanical properties. However, many SPEs with liquid-like Li<sup>+</sup> transport mechanisms suffer a fundamental trade-off between conductivity and strength. Dynamic polymer networks can improve bulk mechanics with minimal impact to segmental relaxation or ionic conductivity. This study demonstrates a system where a single polymer-bound ligand simultaneously dissociates Li<sup>+</sup> and forms long-lived Ni<sup>2+</sup> networks. The polymer comprises an ethylene oxide backbone and imidazole (Im) ligands, blended with Li<sup>+</sup> and Ni<sup>2+</sup> salts. Ni<sup>2+</sup>–Im dynamic cross-links result in the formation of a rubbery plateau resulting in, consequently, storage modulus improvement by a factor of 133× with the introduction of Ni<sup>2+</sup> at <i>r</i><sub>Ni</sub> = 0.08, from 0.014 to 1.907 MPa. Even with Ni<sup>2+</sup> loading, the high Li<sup>+</sup> conductivity of 3.7 × 10<sup>–6</sup> S/cm is retained at 90 °C. This work demonstrates that decoupling of ion transport and bulk mechanics can be readily achieved by the addition of multivalent metal cations to polymers with chelating ligands.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmacrolett.4c00158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Next-generation batteries demand solid polymer electrolytes (SPEs) with rapid ion transport and robust mechanical properties. However, many SPEs with liquid-like Li+ transport mechanisms suffer a fundamental trade-off between conductivity and strength. Dynamic polymer networks can improve bulk mechanics with minimal impact to segmental relaxation or ionic conductivity. This study demonstrates a system where a single polymer-bound ligand simultaneously dissociates Li+ and forms long-lived Ni2+ networks. The polymer comprises an ethylene oxide backbone and imidazole (Im) ligands, blended with Li+ and Ni2+ salts. Ni2+–Im dynamic cross-links result in the formation of a rubbery plateau resulting in, consequently, storage modulus improvement by a factor of 133× with the introduction of Ni2+ at rNi = 0.08, from 0.014 to 1.907 MPa. Even with Ni2+ loading, the high Li+ conductivity of 3.7 × 10–6 S/cm is retained at 90 °C. This work demonstrates that decoupling of ion transport and bulk mechanics can be readily achieved by the addition of multivalent metal cations to polymers with chelating ligands.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在不牺牲聚合物电解质中锂离子传输性能的前提下提高机械强度
下一代电池要求固体聚合物电解质(SPE)具有快速的离子传输能力和坚固的机械性能。然而,许多具有液态 Li+ 传输机制的 SPE 在导电性和强度之间存在根本性的权衡。动态聚合物网络可以改善块体力学性能,而对段弛豫或离子传导性的影响却微乎其微。本研究展示了一种系统,在该系统中,单个与聚合物结合的配体可同时解离 Li+,并形成长寿命的 Ni2+ 网络。这种聚合物由环氧乙烷骨架和咪唑(Im)配体以及 Li+ 和 Ni2+ 盐组成。Ni2+-Im 动态交联可形成橡胶高原,因此,在 rNi = 0.08 时,引入 Ni2+ 可使存储模量提高 133 倍,从 0.014 兆帕提高到 1.907 兆帕。即使添加了 Ni2+,在 90 °C 时仍能保持 3.7 × 10-6 S/cm 的高 Li+ 电导率。这项研究表明,通过在带有螯合配体的聚合物中添加多价金属阳离子,可以轻松实现离子传输与体态力学的解耦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.40
自引率
3.40%
发文量
209
审稿时长
1 months
期刊介绍: ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science. With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.
期刊最新文献
Mechanism of Interconnected Pore Formation in High Internal Phase Emulsion-Templated Polymer. Quantifying and Modeling the Crystallinity of Polymers Confined in Nanopores. Dynamic Implications of Noncovalent Interactions in Amphiphilic Single-Chain Polymer Nanoparticles. Entanglement Kinetics in Polymer Melts Are Chemically Specific. Stably Grafting Polymer Brushes on Both Active and Inert Surfaces Using Tadpole-Like Single-Chain Particles with an Interactive "Head".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1