Glycyl-l-histidyl-l-lysine prevents copper- and zinc-induced protein aggregation and central nervous system cell death in vitro.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Metallomics Pub Date : 2024-05-02 DOI:10.1093/mtomcs/mfae019
Jin-Hong Min, Heela Sarlus, Robert A Harris
{"title":"Glycyl-l-histidyl-l-lysine prevents copper- and zinc-induced protein aggregation and central nervous system cell death in vitro.","authors":"Jin-Hong Min, Heela Sarlus, Robert A Harris","doi":"10.1093/mtomcs/mfae019","DOIUrl":null,"url":null,"abstract":"<p><p>Common features of neurodegenerative diseases are oxidative and inflammatory imbalances as well as the misfolding of proteins. An excess of free metal ions can be pathological and contribute to cell death, but only copper and zinc strongly promote protein aggregation. Herein we demonstrate that the endogenous copper-binding tripeptide glycyl-l-histidyl-l-lysine (GHK) has the ability to bind to and reduce copper redox activity and to prevent copper- and zinc-induced cell death in vitro. In addition, GHK prevents copper- and zinc-induced bovine serum albumin aggregation and reverses aggregation through resolubilizing the protein. We further demonstrate the enhanced toxicity of copper during inflammation and the ability of GHK to attenuate this toxicity. Finally, we investigated the effects of copper on enhancing paraquat toxicity and report a protective effect of GHK. We therefore conclude that GHK has potential as a cytoprotective compound with regard to copper and zinc toxicity, with positive effects on protein solubility and aggregation that warrant further investigation in the treatment of neurodegenerative diseases.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11135135/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/mtomcs/mfae019","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Common features of neurodegenerative diseases are oxidative and inflammatory imbalances as well as the misfolding of proteins. An excess of free metal ions can be pathological and contribute to cell death, but only copper and zinc strongly promote protein aggregation. Herein we demonstrate that the endogenous copper-binding tripeptide glycyl-l-histidyl-l-lysine (GHK) has the ability to bind to and reduce copper redox activity and to prevent copper- and zinc-induced cell death in vitro. In addition, GHK prevents copper- and zinc-induced bovine serum albumin aggregation and reverses aggregation through resolubilizing the protein. We further demonstrate the enhanced toxicity of copper during inflammation and the ability of GHK to attenuate this toxicity. Finally, we investigated the effects of copper on enhancing paraquat toxicity and report a protective effect of GHK. We therefore conclude that GHK has potential as a cytoprotective compound with regard to copper and zinc toxicity, with positive effects on protein solubility and aggregation that warrant further investigation in the treatment of neurodegenerative diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甘氨酰-L-组氨酰-L-赖氨酸(GHK)可在体外防止铜和锌诱导的蛋白质聚集和中枢神经系统细胞死亡。
神经退行性疾病的共同特征是氧化和炎症失衡以及蛋白质错误折叠。过量的游离金属离子会导致细胞死亡,但只有铜和锌能强烈促进蛋白质的聚集。在这里,我们证明了内源性铜结合三肽甘氨酰-L-组氨酰-L-赖氨酸(GHK)能够与铜结合并降低铜的氧化还原活性,防止铜和锌诱导的体外细胞死亡。此外,GHK 还能防止铜和锌诱导的 BSA 聚合,并通过分解蛋白质来逆转聚合。我们进一步证明了铜在炎症过程中的毒性增强以及 GHK 减轻这种毒性的能力。最后,我们研究了铜对百草枯毒性增强的影响,并报告了 GHK 的保护作用。因此,我们得出结论:GHK 具有作为一种细胞保护性化合物的潜力,可以减轻铜和锌的毒性,并对蛋白质的溶解性和聚集性产生积极影响,值得在治疗神经退行性疾病方面进行进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metallomics
Metallomics 生物-生化与分子生物学
CiteScore
7.00
自引率
5.90%
发文量
87
审稿时长
1 months
期刊介绍: Global approaches to metals in the biosciences
期刊最新文献
Antisense transcription is associated with expression of metal resistance determinants in Cupriavidus metallidurans CH34. Linking the transcriptome to physiology: response of the proteome of cupriavidus metallidurans to changing metal availability. Natural variation of magnesium stable isotopes in human kidney stones. Formation mechanism of iron-catechol complexes in the colored periostracum of Corbicula spp. X-ray fluorescence mapping of brain tissue reveals the profound extent of trace element dysregulation in stroke pathophysiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1