M Jake Pushie, Nicole J Sylvain, Huishu Hou, Nicole Pendleton, Richard Wang, Liam Zimmermann, Maxwell Pally, Francisco S Cayabyab, Lissa Peeling, Michael E Kelly
The brain is a privileged organ with regards to its trace element composition and maintains a robust barrier system to sequester this specialized environment from the rest of the body and the vascular system. Stroke is caused by loss of adequate blood flow to a region of the brain. Without adequate blood flow ischemic changes begin almost immediately, triggering an ischemic cascade, characterized by ion dysregulation, loss of function, oxidative damage, cellular degradation, and break down of the barrier that helps maintain this environment. Ion dysregulation is a hallmark of stroke pathophysiology and we observe that most elements in the brain are dysregulated after stroke. X-ray fluorescence-based detection of physiological changes in the neurometallome after stroke reveals profound ion dysregulation within the lesion and surrounding tissue. Not only are most elements significantly dysregulated after stroke, but the level of dysregulation cannot be predicted from a cell-level description of dysregulation. X-ray fluorescence imaging reveals that the stroke lesion retains < 25% of essential K+ after stroke, but this element is not concomitantly elevated elsewhere in the organ. Moreover, elements like Na+, Ca2+, and Cl- are vastly elevated above levels available in normal brain tissue (>400%, >200%, and > 150%, respectively). We hypothesize that weakening of the blood-brain-barrier after stroke allows elements to freely diffuse down their concentration gradient so that the stroke lesion is in equilibrium with blood (and the compartments containing brain interstitial fluid and cerebrospinal fluid). The changes observed for the neurometallome likely has consequences for the potential to rescue infarcted tissue, but also presents specific targets for treatment.
大脑在微量元素组成方面是一个特殊的器官,并保持着一个强大的屏障系统,将这一特殊环境与身体其他部位和血管系统隔绝开来。脑卒中是由于大脑某一区域失去充足的血流而引起的。如果没有足够的血流,缺血性变化几乎立即开始,引发缺血级联反应,其特点是离子失调、功能丧失、氧化损伤、细胞退化以及有助于维持这种环境的屏障被破坏。离子失调是中风病理生理学的一个标志,我们观察到中风后大脑中的大多数元素都失调了。基于 X 射线荧光技术对中风后神经金属组生理变化的检测显示,病变部位和周围组织内的离子严重失调。不仅大多数元素在中风后明显失调,而且失调的程度无法从细胞水平的失调描述中预测。X 射线荧光成像显示,中风病灶的保留率分别为 400%、>200% 和 >150%)。我们推测,中风后血脑屏障的减弱允许元素顺着浓度梯度自由扩散,从而使中风病灶与血液(以及含有脑间质和脑脊液的区室)处于平衡状态。观察到的神经金属组的变化可能会对挽救梗死组织的潜力产生影响,同时也为治疗提供了特定的目标。
{"title":"X-ray fluorescence mapping of brain tissue reveals the profound extent of trace element dysregulation in stroke pathophysiology.","authors":"M Jake Pushie, Nicole J Sylvain, Huishu Hou, Nicole Pendleton, Richard Wang, Liam Zimmermann, Maxwell Pally, Francisco S Cayabyab, Lissa Peeling, Michael E Kelly","doi":"10.1093/mtomcs/mfae054","DOIUrl":"https://doi.org/10.1093/mtomcs/mfae054","url":null,"abstract":"<p><p>The brain is a privileged organ with regards to its trace element composition and maintains a robust barrier system to sequester this specialized environment from the rest of the body and the vascular system. Stroke is caused by loss of adequate blood flow to a region of the brain. Without adequate blood flow ischemic changes begin almost immediately, triggering an ischemic cascade, characterized by ion dysregulation, loss of function, oxidative damage, cellular degradation, and break down of the barrier that helps maintain this environment. Ion dysregulation is a hallmark of stroke pathophysiology and we observe that most elements in the brain are dysregulated after stroke. X-ray fluorescence-based detection of physiological changes in the neurometallome after stroke reveals profound ion dysregulation within the lesion and surrounding tissue. Not only are most elements significantly dysregulated after stroke, but the level of dysregulation cannot be predicted from a cell-level description of dysregulation. X-ray fluorescence imaging reveals that the stroke lesion retains < 25% of essential K+ after stroke, but this element is not concomitantly elevated elsewhere in the organ. Moreover, elements like Na+, Ca2+, and Cl- are vastly elevated above levels available in normal brain tissue (>400%, >200%, and > 150%, respectively). We hypothesize that weakening of the blood-brain-barrier after stroke allows elements to freely diffuse down their concentration gradient so that the stroke lesion is in equilibrium with blood (and the compartments containing brain interstitial fluid and cerebrospinal fluid). The changes observed for the neurometallome likely has consequences for the potential to rescue infarcted tissue, but also presents specific targets for treatment.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seyed Mostafa Hosseinpour Mashkani, David Bishop, Mika T Westerhausen, Paul A Adlard, S Mojtaba Golzan
Transition metals like copper, iron, and zinc are vital for normal central nervous system function and are also linked to neurodegeneration, particularly in the onset and progression of Alzheimer's disease (AD). Their alterations in AD, identified prior to amyloid plaque aggregation, offer a unique target for staging pre-amyloid AD. However, analysing their levels in the brain is extremely challenging, necessitating the development of alternative approaches. Here, we utilised laser ablation-inductively coupled plasma-mass spectrometry and solution nebulisation-inductively coupled plasma-mass spectrometry to quantitatively measure Cu, Fe, and Zn concentrations in the retina and hippocampus samples obtained from human donors (i.e., AD and healthy controls), and in the APP/PS1 mouse model of AD, and Wild Type controls, aged 9 and 18 months. Our findings revealed significantly elevated Cu, Fe, and Zn levels in the retina (*p < 0.05, **p < 0.01, ***p < 0.001) and hippocampus (*p < 0.05, *p < 0.05, *p < 0.05) of human AD samples compared to healthy controls. Conversely, APP/PS1 mouse models exhibited notably lower metal levels in the same regions compared to WT mice, Cu, Fe, and Zn levels in the retina (**p < 0.01, *p < 0.05, *p < 0.05) and hippocampus (**p < 0.01, **p < 0.01, *p < 0.05). The contrasting metal profiles in human and mouse samples, yet similar patterns within each species' retina and brain, suggest the retina mirrors cerebral metal dyshomeostasis in AD. Our findings lay the groundwork for staging pre-AD pathophysiology through assessment of transition metal levels in the retina.
{"title":"Alterations in Zinc, Copper, and Iron Levels in the Retina and Brain of Alzheimer's Disease Patients and the APP/PS1 Mouse Model.","authors":"Seyed Mostafa Hosseinpour Mashkani, David Bishop, Mika T Westerhausen, Paul A Adlard, S Mojtaba Golzan","doi":"10.1093/mtomcs/mfae053","DOIUrl":"https://doi.org/10.1093/mtomcs/mfae053","url":null,"abstract":"<p><p>Transition metals like copper, iron, and zinc are vital for normal central nervous system function and are also linked to neurodegeneration, particularly in the onset and progression of Alzheimer's disease (AD). Their alterations in AD, identified prior to amyloid plaque aggregation, offer a unique target for staging pre-amyloid AD. However, analysing their levels in the brain is extremely challenging, necessitating the development of alternative approaches. Here, we utilised laser ablation-inductively coupled plasma-mass spectrometry and solution nebulisation-inductively coupled plasma-mass spectrometry to quantitatively measure Cu, Fe, and Zn concentrations in the retina and hippocampus samples obtained from human donors (i.e., AD and healthy controls), and in the APP/PS1 mouse model of AD, and Wild Type controls, aged 9 and 18 months. Our findings revealed significantly elevated Cu, Fe, and Zn levels in the retina (*p < 0.05, **p < 0.01, ***p < 0.001) and hippocampus (*p < 0.05, *p < 0.05, *p < 0.05) of human AD samples compared to healthy controls. Conversely, APP/PS1 mouse models exhibited notably lower metal levels in the same regions compared to WT mice, Cu, Fe, and Zn levels in the retina (**p < 0.01, *p < 0.05, *p < 0.05) and hippocampus (**p < 0.01, **p < 0.01, *p < 0.05). The contrasting metal profiles in human and mouse samples, yet similar patterns within each species' retina and brain, suggest the retina mirrors cerebral metal dyshomeostasis in AD. Our findings lay the groundwork for staging pre-AD pathophysiology through assessment of transition metal levels in the retina.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kerry R. Garza, Stephen L. Clarke, Yi-Hsuan Ho, Matthew D. Bruss, Aparna Vasanthakumar, Sheila A. Anderson and Richard S. Eisenstein
Iron regulatory proteins (IRPs) are iron-responsive RNA binding proteins that dictate changes in cellular iron metabolism in animal cells by controlling the fate of mRNAs containing iron responsive elements (IREs). IRPs have broader physiological roles as some targeted mRNAs encode proteins with functions beyond iron metabolism suggesting hierarchical regulation of IRP-targeted mRNAs. We observe that the translational regulation of IRP-targeted mRNAs encoding iron storage (L- and H-ferritins) and export (ferroportin) proteins have different set-points of iron responsiveness compared to that for the TCA cycle enzyme mitochondrial aconitase. The ferritins and ferroportin mRNA were largely translationally repressed in the liver of rats fed a normal diet whereas mitochondrial aconitase mRNA is primarily polysome bound. Consequently, acute iron overload increases polysome association of H- and L-ferritin and ferroportin mRNAs while mitochondrial aconitase mRNA showed little stimulation. Conversely, mitochondrial aconitase mRNA is most responsive in iron deficiency. These differences in regulation were associated with a faster off-rate of IRP1 for the IRE of mitochondrial aconitase in comparison to that of L-ferritin. Thus, hierarchical control of mRNA translation by IRPs involves selective control of cellular functions acting at different states of cellular iron status and that are critical for adaptations to iron deficiency or prevention of iron toxicity.
{"title":"Differential translational control of 5′ IRE-containing mRNA in response to dietary iron deficiency and acute iron overload†","authors":"Kerry R. Garza, Stephen L. Clarke, Yi-Hsuan Ho, Matthew D. Bruss, Aparna Vasanthakumar, Sheila A. Anderson and Richard S. Eisenstein","doi":"10.1039/D0MT00192A","DOIUrl":"https://doi.org/10.1039/D0MT00192A","url":null,"abstract":"<p >Iron regulatory proteins (IRPs) are iron-responsive RNA binding proteins that dictate changes in cellular iron metabolism in animal cells by controlling the fate of mRNAs containing iron responsive elements (IREs). IRPs have broader physiological roles as some targeted mRNAs encode proteins with functions beyond iron metabolism suggesting hierarchical regulation of IRP-targeted mRNAs. We observe that the translational regulation of IRP-targeted mRNAs encoding iron storage (L- and H-ferritins) and export (ferroportin) proteins have different set-points of iron responsiveness compared to that for the TCA cycle enzyme mitochondrial aconitase. The ferritins and ferroportin mRNA were largely translationally repressed in the liver of rats fed a normal diet whereas mitochondrial aconitase mRNA is primarily polysome bound. Consequently, acute iron overload increases polysome association of H- and L-ferritin and ferroportin mRNAs while mitochondrial aconitase mRNA showed little stimulation. Conversely, mitochondrial aconitase mRNA is most responsive in iron deficiency. These differences in regulation were associated with a faster off-rate of IRP1 for the IRE of mitochondrial aconitase in comparison to that of L-ferritin. Thus, hierarchical control of mRNA translation by IRPs involves selective control of cellular functions acting at different states of cellular iron status and that are critical for adaptations to iron deficiency or prevention of iron toxicity.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" 12","pages":" 2186-2198"},"PeriodicalIF":3.4,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2020/mt/d0mt00192a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3565879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Monika Katarzyna Lesiów, Piotr Pietrzyk, Alina Bieńko, Teresa Kowalik-Jankowska, Anna Łęgowska, Natalia Ptaszyńska and Krzysztof Rolka
Correction for ‘Stability of Cu(II) complexes with FomA protein fragments containing two His residues in the peptide chain’ by Monika Katarzyna Lesiów et al., Metallomics, 2019, 11, 1518–1531, DOI: 10.1039/C9MT00131J.
修正“在肽链中含有两个His残基的FomA蛋白片段的Cu(II)复合物的稳定性”,Monika Katarzyna Lesiów等人,金属组学,2019,11,1518-1531,DOI: 10.1039/C9MT00131J。
{"title":"Correction: Stability of Cu(ii) complexes with FomA protein fragments containing two His residues in the peptide chain","authors":"Monika Katarzyna Lesiów, Piotr Pietrzyk, Alina Bieńko, Teresa Kowalik-Jankowska, Anna Łęgowska, Natalia Ptaszyńska and Krzysztof Rolka","doi":"10.1039/D0MT90038A","DOIUrl":"https://doi.org/10.1039/D0MT90038A","url":null,"abstract":"<p >Correction for ‘Stability of Cu(<small>II</small>) complexes with FomA protein fragments containing two His residues in the peptide chain’ by Monika Katarzyna Lesiów <em>et al.</em>, <em>Metallomics</em>, 2019, <strong>11</strong>, 1518–1531, DOI: 10.1039/C9MT00131J.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" 12","pages":" 2199-2199"},"PeriodicalIF":3.4,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2020/mt/d0mt90038a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3565880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Debora Wernitznig, Samuel M. Meier-Menches, Klaudia Cseh, Sarah Theiner, Dominik Wenisch, Andreas Schweikert, Michael A. Jakupec, Gunda Koellensperger, Andreas Wernitznig, Wolfgang Sommergruber and Bernhard K. Keppler
Organometallic metal(arene) anticancer agents were believed to confer low selectivity for potential cellular targets. However, the ruthenium(arene) pyridinecarbothioamide (plecstatin-1) showed target selectivity for plectin, a scaffold protein and cytolinker. We employed a three-dimensional cancer spheroid model and showed that plecstatin-1 limited spheroid growth, induced changes in the morphology and in the architecture of tumour spheroids by disrupting the cytoskeletal organization. Additionally, we demonstrated that plecstatin-1 induced oxidative stress, followed by the induction of an immunogenic cell death signature through phosphorylation of eIF2α, exposure of calreticulin, HSP90 and HSP70 on the cell membrane and secretion of ATP followed by release of high mobility group box-1.
{"title":"Plecstatin-1 induces an immunogenic cell death signature in colorectal tumour spheroids†","authors":"Debora Wernitznig, Samuel M. Meier-Menches, Klaudia Cseh, Sarah Theiner, Dominik Wenisch, Andreas Schweikert, Michael A. Jakupec, Gunda Koellensperger, Andreas Wernitznig, Wolfgang Sommergruber and Bernhard K. Keppler","doi":"10.1039/D0MT00227E","DOIUrl":"https://doi.org/10.1039/D0MT00227E","url":null,"abstract":"<p >Organometallic metal(arene) anticancer agents were believed to confer low selectivity for potential cellular targets. However, the ruthenium(arene) pyridinecarbothioamide (plecstatin-1) showed target selectivity for plectin, a scaffold protein and cytolinker. We employed a three-dimensional cancer spheroid model and showed that plecstatin-1 limited spheroid growth, induced changes in the morphology and in the architecture of tumour spheroids by disrupting the cytoskeletal organization. Additionally, we demonstrated that plecstatin-1 induced oxidative stress, followed by the induction of an immunogenic cell death signature through phosphorylation of eIF2α, exposure of calreticulin, HSP90 and HSP70 on the cell membrane and secretion of ATP followed by release of high mobility group box-1.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" 12","pages":" 2121-2133"},"PeriodicalIF":3.4,"publicationDate":"2020-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2020/mt/d0mt00227e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3625647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashley L. Hollings, Virginie Lam, Ryu Takechi, John C. L. Mamo, Juliane Reinhardt, Martin D. de Jonge, Peter Kappen and Mark J. Hackett
Zinc is a prominent trace metal required for normal memory function. Memory loss and cognitive decline during natural ageing and neurodegenerative disease have been associated with altered brain-Zn homeostasis. Yet, the exact chemical pathways through which Zn influences memory function during health, natural ageing, or neurodegenerative disease remain unknown. The gap in the literature may in part be due to the difficulty to simultaneously image, and therefore, study the different chemical forms of Zn within the brain (or biological samples in general). To this extent, we have begun developing and optimising protocols that incorporate X-ray absorption near-edge structure (XANES) spectroscopic analysis of tissue at the Zn K-edge as an analytical tool to study Zn speciation in the brain. XANES is ideally suited for this task as all chemical forms of Zn are detected, the technique requires minimal sample preparation that may otherwise redistribute or alter the chemical form of Zn, and the Zn K-edge has known sensitivity to coordination geometry and ligand type. Herein, we report our initial results where we fit K-edge spectra collected from micro-dissected flash-frozen brain tissue, to a spectral library prepared from standard solutions, to demonstrate differences in the chemical form of Zn that exist between two brain regions, the hippocampus and cerebellum. Lastly, we have used an X-ray microprobe to demonstrate differences in Zn speciation within sub-regions of thin air-dried sections of the murine hippocampus; but, the corresponding results highlight that the chemical form of Zn is easily perturbed by sample preparation such as tissue sectioning or air-drying, which must be a critical consideration for future work.
锌是一种重要的微量金属,需要正常的记忆功能。自然衰老和神经退行性疾病期间的记忆丧失和认知能力下降与脑锌稳态的改变有关。然而,锌在健康、自然衰老或神经退行性疾病期间影响记忆功能的确切化学途径仍不清楚。文献上的空白可能部分是由于难以同时成像,因此,研究大脑(或一般的生物样本)中锌的不同化学形式。在这种程度上,我们已经开始开发和优化方案,将组织的x射线吸收近边缘结构(XANES)光谱分析纳入Zn k边缘,作为研究Zn在大脑中形成的分析工具。XANES非常适合这项任务,因为可以检测到所有Zn的化学形式,该技术需要最少的样品制备,否则可能会重新分配或改变Zn的化学形式,并且Zn k -边缘对配位几何形状和配体类型具有已知的敏感性。在此,我们报告了我们的初步结果,我们将从显微解剖的快速冷冻脑组织收集的k边缘光谱与标准溶液制备的光谱库相匹配,以证明存在于两个大脑区域(海马和小脑)之间的锌化学形式的差异。最后,我们使用x射线微探针来证明小鼠海马薄风干切片亚区域内Zn物种形成的差异;但是,相应的结果强调,锌的化学形态很容易受到样品制备(如组织切片或风干)的干扰,这必须是未来工作的关键考虑因素。
{"title":"Revealing differences in the chemical form of zinc in brain tissue using K-edge X-ray absorption near-edge structure spectroscopy†","authors":"Ashley L. Hollings, Virginie Lam, Ryu Takechi, John C. L. Mamo, Juliane Reinhardt, Martin D. de Jonge, Peter Kappen and Mark J. Hackett","doi":"10.1039/D0MT00198H","DOIUrl":"https://doi.org/10.1039/D0MT00198H","url":null,"abstract":"<p >Zinc is a prominent trace metal required for normal memory function. Memory loss and cognitive decline during natural ageing and neurodegenerative disease have been associated with altered brain-Zn homeostasis. Yet, the exact chemical pathways through which Zn influences memory function during health, natural ageing, or neurodegenerative disease remain unknown. The gap in the literature may in part be due to the difficulty to simultaneously image, and therefore, study the different chemical forms of Zn within the brain (or biological samples in general). To this extent, we have begun developing and optimising protocols that incorporate X-ray absorption near-edge structure (XANES) spectroscopic analysis of tissue at the Zn K-edge as an analytical tool to study Zn speciation in the brain. XANES is ideally suited for this task as all chemical forms of Zn are detected, the technique requires minimal sample preparation that may otherwise redistribute or alter the chemical form of Zn, and the Zn K-edge has known sensitivity to coordination geometry and ligand type. Herein, we report our initial results where we fit K-edge spectra collected from micro-dissected flash-frozen brain tissue, to a spectral library prepared from standard solutions, to demonstrate differences in the chemical form of Zn that exist between two brain regions, the hippocampus and cerebellum. Lastly, we have used an X-ray microprobe to demonstrate differences in Zn speciation within sub-regions of thin air-dried sections of the murine hippocampus; but, the corresponding results highlight that the chemical form of Zn is easily perturbed by sample preparation such as tissue sectioning or air-drying, which must be a critical consideration for future work.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" 12","pages":" 2134-2144"},"PeriodicalIF":3.4,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3625648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antônio Jesus Dorighetto Cogo, Arnoldo Rocha Façanha, Layz Ribeiro da Silva Teixeira, Sávio Bastos de Souza, Janiélio Gonçalves da Rocha, Frederico Firme Figueira, Frederico Jacob Eutrópio, Amanda Azevedo Bertolazi, Carlos Eduardo de Rezende, Cesar Abel Krohling, Lev A. Okorokov, Cristina Cruz, Alessandro Coutinho Ramos and Anna L. Okorokova-Façanha
Iron is an essential nutrient but is toxic in excess mainly under acidic conditions. Yeasts have emerged as low cost, highly efficient soil inoculants for the decontamination of metal-polluted areas, harnessing an increasing understanding of their metal tolerance mechanisms. Here, we investigated the effects of extracellular iron and acid pH stress on the dimorphism of Yarrowia lipolytica. Its growth was unaffected by 1 or 2 mM FeSO4, while a strong cellular iron accumulation was detected. However, the iron treatments decreased the hyphal length and number, mainly at 2 mM FeSO4 and pH 4.5. Inward cell membrane H+ fluxes were found at pH 4.5 and 6.0 correlated with a pH increase at the cell surface and a conspicuous yeast-to-hypha transition activity. Conversely, a remarkable H+ efflux was detected at pH 3.0, related to the extracellular microenvironment acidification and inhibition of yeast-to-hypha transition. Iron treatments intensified H+ influxes at pH 4.5 and 6.0 and inhibited H+ efflux at pH 3.0. Moreover, iron treatments inhibited the expression and activities of the plasma membrane H+-ATPase, with the H+ transport inhibited to a greater extent than the ATP hydrolysis, suggesting an iron-induced uncoupling of the pump. Our data indicate that Y. lipolytica adaptations to high iron and acidic environments occur at the expense of remodelling the yeast morphogenesis through a cellular pH modulation by H+-ATPases and H+ coupled transporters, highlighting the capacity of this non-conventional yeast to accumulate high amounts of iron and its potential application for bioremediation.
铁是一种必需的营养物质,但主要在酸性条件下过量是有毒的。酵母已成为低成本,高效的土壤接种剂,用于金属污染地区的净化,利用对其金属耐受机制的日益了解。在这里,我们研究了细胞外铁和酸性pH胁迫对多脂耶氏菌二态性的影响。它的生长不受1或2 mM FeSO4的影响,而细胞铁积累很强。铁处理减少菌丝长度和菌丝数量,主要表现在2 mM FeSO4和pH为4.5时。在pH为4.5和6.0时,细胞膜内的H+通量与细胞表面pH升高和酵母向菌丝转化的明显活性相关。相反,在pH为3.0时,检测到显著的H+外排,这与细胞外微环境酸化和酵母向菌丝转化的抑制有关。铁处理增强了pH为4.5和6.0时的H+流入,抑制了pH为3.0时的H+流出。此外,铁处理抑制了质膜H+-ATP酶的表达和活性,H+转运受到的抑制程度大于ATP水解,表明铁诱导了泵的解耦。我们的数据表明,聚脂酵母对高铁和酸性环境的适应是以通过H+- atp酶和H+偶联转运体调节细胞pH来重塑酵母形态发生为代价的,这突出了这种非常规酵母积累大量铁的能力及其在生物修复方面的潜在应用。
{"title":"Plasma membrane H+ pump at a crossroads of acidic and iron stresses in yeast-to-hypha transition†","authors":"Antônio Jesus Dorighetto Cogo, Arnoldo Rocha Façanha, Layz Ribeiro da Silva Teixeira, Sávio Bastos de Souza, Janiélio Gonçalves da Rocha, Frederico Firme Figueira, Frederico Jacob Eutrópio, Amanda Azevedo Bertolazi, Carlos Eduardo de Rezende, Cesar Abel Krohling, Lev A. Okorokov, Cristina Cruz, Alessandro Coutinho Ramos and Anna L. Okorokova-Façanha","doi":"10.1039/D0MT00179A","DOIUrl":"https://doi.org/10.1039/D0MT00179A","url":null,"abstract":"<p >Iron is an essential nutrient but is toxic in excess mainly under acidic conditions. Yeasts have emerged as low cost, highly efficient soil inoculants for the decontamination of metal-polluted areas, harnessing an increasing understanding of their metal tolerance mechanisms. Here, we investigated the effects of extracellular iron and acid pH stress on the dimorphism of <em>Yarrowia lipolytica</em>. Its growth was unaffected by 1 or 2 mM FeSO<small><sub>4</sub></small>, while a strong cellular iron accumulation was detected. However, the iron treatments decreased the hyphal length and number, mainly at 2 mM FeSO<small><sub>4</sub></small> and pH 4.5. Inward cell membrane H<small><sup>+</sup></small> fluxes were found at pH 4.5 and 6.0 correlated with a pH increase at the cell surface and a conspicuous yeast-to-hypha transition activity. Conversely, a remarkable H<small><sup>+</sup></small> efflux was detected at pH 3.0, related to the extracellular microenvironment acidification and inhibition of yeast-to-hypha transition. Iron treatments intensified H<small><sup>+</sup></small> influxes at pH 4.5 and 6.0 and inhibited H<small><sup>+</sup></small> efflux at pH 3.0. Moreover, iron treatments inhibited the expression and activities of the plasma membrane H<small><sup>+</sup></small>-ATPase, with the H<small><sup>+</sup></small> transport inhibited to a greater extent than the ATP hydrolysis, suggesting an iron-induced uncoupling of the pump. Our data indicate that <em>Y. lipolytica</em> adaptations to high iron and acidic environments occur at the expense of remodelling the yeast morphogenesis through a cellular pH modulation by H<small><sup>+</sup></small>-ATPases and H<small><sup>+</sup></small> coupled transporters, highlighting the capacity of this non-conventional yeast to accumulate high amounts of iron and its potential application for bioremediation.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" 12","pages":" 2174-2185"},"PeriodicalIF":3.4,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/D0MT00179A","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3565877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Irene Barguilla, Jordi Bach, Jana Peremartí, Ricard Marcos and Alba Hernández
Arsenic induces oncogenic effects activating stress-related signalling pathways. This can result in the over-activation of the AP-1 protein, specifically its FRA1 component. FRA1 is a transcription factor frequently overexpressed in epithelial tumors, where it can regulate the expression of different target genes. Accordingly, FRA1 could play an essential role in the in vitro cell transformation induced by arsenic. FRA1 levels were monitored in MEF cells throughout their transformation stages during 40 weeks of long-term 2 μM arsenic exposure. Interestingly, the results show a progressive FRA1 overexpression with time (60-fold and 11-fold for mRNA and pFRA/non-pFRA1, respectively, at week 40), which may be responsible for the observed altered expression in the FRA1 downstream target genes Pten, Pdcd4, Tpm1, Tgfb1, Tgfb2, Zeb1, Zeb2, and Twist. The levels of MAPKs (ERK, p38, and JNK) and other known players upstream from FRA1 were assessed at equivalent time-points, and ERK, p38 and RAS were pinpointed as potential candidates involved in arsenic-induced FRA1 activation. Furthermore, FRA1 stable knockdown under chronic arsenic exposure settings elicits a remarkable impact on the features relative to the cells’ oncogenic phenotype. Notably, FRA1 knockdown cells present a 30% diminished proliferation rate, a 50% lowered migration and invasion potential, a 50% reduction in senescence, and a 30–60% reduced tumorsphere-forming ability. This work is the first to demonstrate the important role of FRA1 in the development and aggressiveness of the in vitro transformed phenotype induced by long-term arsenic exposure.
{"title":"FRA1 is essential for the maintenance of the oncogenic phenotype induced by in vitro long-term arsenic exposure†","authors":"Irene Barguilla, Jordi Bach, Jana Peremartí, Ricard Marcos and Alba Hernández","doi":"10.1039/D0MT00209G","DOIUrl":"https://doi.org/10.1039/D0MT00209G","url":null,"abstract":"<p >Arsenic induces oncogenic effects activating stress-related signalling pathways. This can result in the over-activation of the AP-1 protein, specifically its FRA1 component. FRA1 is a transcription factor frequently overexpressed in epithelial tumors, where it can regulate the expression of different target genes. Accordingly, FRA1 could play an essential role in the <em>in vitro</em> cell transformation induced by arsenic. FRA1 levels were monitored in MEF cells throughout their transformation stages during 40 weeks of long-term 2 μM arsenic exposure. Interestingly, the results show a progressive FRA1 overexpression with time (60-fold and 11-fold for mRNA and pFRA/non-pFRA1, respectively, at week 40), which may be responsible for the observed altered expression in the FRA1 downstream target genes <em>Pten</em>, <em>Pdcd4</em>, <em>Tpm1</em>, <em>Tgfb1</em>, <em>Tgfb2</em>, <em>Zeb1</em>, <em>Zeb2</em>, and <em>Twist</em>. The levels of MAPKs (ERK, p38, and JNK) and other known players upstream from FRA1 were assessed at equivalent time-points, and ERK, p38 and RAS were pinpointed as potential candidates involved in arsenic-induced FRA1 activation. Furthermore, FRA1 stable knockdown under chronic arsenic exposure settings elicits a remarkable impact on the features relative to the cells’ oncogenic phenotype. Notably, FRA1 knockdown cells present a 30% diminished proliferation rate, a 50% lowered migration and invasion potential, a 50% reduction in senescence, and a 30–60% reduced tumorsphere-forming ability. This work is the first to demonstrate the important role of FRA1 in the development and aggressiveness of the <em>in vitro</em> transformed phenotype induced by long-term arsenic exposure.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" 12","pages":" 2161-2173"},"PeriodicalIF":3.4,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/D0MT00209G","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3625650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Wu, Jinghua Yang, Miao Yu, Wenchang Sun, Yarao Han, Xiaobo Lu, Cuihong Jin, Shengwen Wu and Yuan Cai
Rare earth elements (REEs) have caused bioaccumulation and adverse health effects attributed to extensive application. The penetrability of REEs across the blood–brain barrier (BBB) contributes to their neurotoxicity process, but potential mechanisms affecting BBB integrity are still obscure. The present study was designed to investigate the effects of lanthanum on BBB adheren junctions and the actin cytoskeleton in vitro using bEnd.3 cells. After lanthanum chloride (LaCl3, 0.125, 0.25 and 0.5 mM) treatment, cytotoxicity against bEnd.3 cells was observed accompanied by increased intracellular Ca2+. Higher paracellular permeability presented as decreased TEER (transendothelial electrical resistance) and increased HRP (horse radish peroxidase) permeation, and simultaneously reduced VE-cadherin expression and F-actin stress fiber formation caused by LaCl3 were reversed by inhibition of ROCK (Rho-kinase) and MLCK (myosin light chain kinase) using inhibitor Y27632 (10 μM) and ML-7 (10 μM). Moreover, chelating overloaded intracellular Ca2+ by BAPTA-AM (25 μM) remarkably abrogated RhoA/ROCK and MLCK activation and downstream phosphorylation of MYPT1 (myosin phosphatase target subunit 1) and MLC2 (myosin light chain 2), therefore alleviating LaCl3-induced BBB disruption and dysfunction. In conclusion, this study indicated that lanthanum caused endothelial barrier hyperpermeability accompanied by loss of VE-cadherin and rearrangement of the actin cytoskeleton though intracellular Ca2+-mediated RhoA/ROCK and MLCK pathways.
{"title":"Lanthanum chloride causes blood–brain barrier disruption through intracellular calcium-mediated RhoA/Rho kinase signaling and myosin light chain kinase","authors":"Jie Wu, Jinghua Yang, Miao Yu, Wenchang Sun, Yarao Han, Xiaobo Lu, Cuihong Jin, Shengwen Wu and Yuan Cai","doi":"10.1039/D0MT00187B","DOIUrl":"https://doi.org/10.1039/D0MT00187B","url":null,"abstract":"<p >Rare earth elements (REEs) have caused bioaccumulation and adverse health effects attributed to extensive application. The penetrability of REEs across the blood–brain barrier (BBB) contributes to their neurotoxicity process, but potential mechanisms affecting BBB integrity are still obscure. The present study was designed to investigate the effects of lanthanum on BBB adheren junctions and the actin cytoskeleton <em>in vitro</em> using bEnd.3 cells. After lanthanum chloride (LaCl<small><sub>3</sub></small>, 0.125, 0.25 and 0.5 mM) treatment, cytotoxicity against bEnd.3 cells was observed accompanied by increased intracellular Ca<small><sup>2+</sup></small>. Higher paracellular permeability presented as decreased TEER (transendothelial electrical resistance) and increased HRP (horse radish peroxidase) permeation, and simultaneously reduced VE-cadherin expression and F-actin stress fiber formation caused by LaCl<small><sub>3</sub></small> were reversed by inhibition of ROCK (Rho-kinase) and MLCK (myosin light chain kinase) using inhibitor Y27632 (10 μM) and ML-7 (10 μM). Moreover, chelating overloaded intracellular Ca<small><sup>2+</sup></small> by BAPTA-AM (25 μM) remarkably abrogated RhoA/ROCK and MLCK activation and downstream phosphorylation of MYPT1 (myosin phosphatase target subunit 1) and MLC2 (myosin light chain 2), therefore alleviating LaCl<small><sub>3</sub></small>-induced BBB disruption and dysfunction. In conclusion, this study indicated that lanthanum caused endothelial barrier hyperpermeability accompanied by loss of VE-cadherin and rearrangement of the actin cytoskeleton though intracellular Ca<small><sup>2+</sup></small>-mediated RhoA/ROCK and MLCK pathways.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" 12","pages":" 2075-2083"},"PeriodicalIF":3.4,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/D0MT00187B","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3625643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rui-Feng Guo, Hou-Tian Yan, Rui-Xue Liu, Hong-Chang Li, Yan-Cheng Liu, Zhen-Feng Chen and Hong Liang
Enrofloxacin (EFX) was selected as the medicinal ligand to afford a new copper(II)-based complex, EFX-Cu, which was structurally characterized by spectroscopic analyses including X-ray single crystal diffraction. It was also stable and could retain the coordination state in aqueous solution. The in vitro antibacterial activity of EFX-Cu against a panel of pathogenic bacteria was about the same as that of EFX, except that it was twice as active against E. coli. The in vivo test on mice gave a LD50 value of 8148 mg kg?1 for EFX-Cu, which was much lower than those for EFX (LD50, 5312 mg kg?1) and its clinically used sodium salt, EFX-Na (LD50, 1421 mg kg?1). In addition, no obvious lesions in the organs of the dead mice were found by histopathological examination. Pharmacokinetic studies on rats suggested similar pharmacokinetics between EFX-Cu and EFX. On the other hand, EFX-Cu showed higher acute toxicity than EFX-Na in zebrafish, which was inconsistent with that in mice. The ROS-related inflammation and anti-inflammatory assay of EFX-Cu, respectively, in normal cells and zebrafish could be ascribed to its ROS-related redox property. Unfortunately, the final in vivo therapeutic assay in the E. coli-infected mouse model indicated that the therapeutic effect of EFX-Cu, mainly in terms of mortality in mice, was found to be lower than that of EFX-Na at the same dosage (800 mg kg?1, continuous gavage), although the contradictory factors between toxicity and antibacterial activity could not be excluded in this trial.
{"title":"Structural characterization and pharmacological assessment in vitro/in vivo of a new copper(ii)-based derivative of enrofloxacin†","authors":"Rui-Feng Guo, Hou-Tian Yan, Rui-Xue Liu, Hong-Chang Li, Yan-Cheng Liu, Zhen-Feng Chen and Hong Liang","doi":"10.1039/D0MT00155D","DOIUrl":"https://doi.org/10.1039/D0MT00155D","url":null,"abstract":"<p >Enrofloxacin (EFX) was selected as the medicinal ligand to afford a new copper(<small>II</small>)-based complex, EFX-Cu, which was structurally characterized by spectroscopic analyses including X-ray single crystal diffraction. It was also stable and could retain the coordination state in aqueous solution. The <em>in vitro</em> antibacterial activity of EFX-Cu against a panel of pathogenic bacteria was about the same as that of EFX, except that it was twice as active against <em>E. coli</em>. The <em>in vivo</em> test on mice gave a LD<small><sub>50</sub></small> value of 8148 mg kg<small><sup>?1</sup></small> for EFX-Cu, which was much lower than those for EFX (LD<small><sub>50</sub></small>, 5312 mg kg<small><sup>?1</sup></small>) and its clinically used sodium salt, EFX-Na (LD<small><sub>50</sub></small>, 1421 mg kg<small><sup>?1</sup></small>). In addition, no obvious lesions in the organs of the dead mice were found by histopathological examination. Pharmacokinetic studies on rats suggested similar pharmacokinetics between EFX-Cu and EFX. On the other hand, EFX-Cu showed higher acute toxicity than EFX-Na in zebrafish, which was inconsistent with that in mice. The ROS-related inflammation and anti-inflammatory assay of EFX-Cu, respectively, in normal cells and zebrafish could be ascribed to its ROS-related redox property. Unfortunately, the final <em>in vivo</em> therapeutic assay in the <em>E. coli</em>-infected mouse model indicated that the therapeutic effect of EFX-Cu, mainly in terms of mortality in mice, was found to be lower than that of EFX-Na at the same dosage (800 mg kg<small><sup>?1</sup></small>, continuous gavage), although the contradictory factors between toxicity and antibacterial activity could not be excluded in this trial.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" 12","pages":" 2145-2160"},"PeriodicalIF":3.4,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/D0MT00155D","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3625649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}