A multiscale attribution framework for separating the effects of cascade and individual reservoirs on runoff.

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2024-07-10 Epub Date: 2024-04-26 DOI:10.1016/j.scitotenv.2024.172784
Yongsheng Jie, Hui Qin, Benjun Jia, Mengqi Tian, Sijing Lou, Guanjun Liu, Yuanjian Huang
{"title":"A multiscale attribution framework for separating the effects of cascade and individual reservoirs on runoff.","authors":"Yongsheng Jie, Hui Qin, Benjun Jia, Mengqi Tian, Sijing Lou, Guanjun Liu, Yuanjian Huang","doi":"10.1016/j.scitotenv.2024.172784","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change and human activities have great impacts on runoff. With the gradual development of cascade hydropower in the watershed, the reservoirs have increasingly impacted runoff. However, the current study mainly focuses on quantifying the impacts of human activities and climate change on runoff, lacking the exploration of the impacts of cascade reservoirs, and the attribution results are relatively rough. Therefore, this study utilized data-driven models to establish a runoff attribution framework with the basic steps of \"interval runoff prediction and scheduling rule extraction\", which achieved the spatial scale separation of the impacts of cascade and individual reservoirs on the runoff, and the analysis of the impacts of each factor at multiple time scales. Taking the upper reaches of the Yangtze River mainstem as an example, we verified the applicability and accuracy of the framework, explored the impacts of climate change, human activities (without reservoir scheduling), and reservoir scheduling on runoff during the period 1980-2018. The research found: (1) Compared to the base period 1980-2005, the average multi-year runoff changes at Pingshan Station (during 2013-2018), Yichang Station (during 2006-2012) and Yichang Station (during 2013-2018) were - 2.61 %, -4.33 % and - 0.89 %, respectively, with decreasing, increasing, and flattening trends over time. (2) Reservoir scheduling is the main factor leading to runoff change, showing negative impacts during flood season and positive impacts during non-flood season. (3) Under the control domain of single and cascade reservoirs, the annual scale impacts of climate change, human activities, and reservoir scheduling on runoff accounted for approximately 1:1:8 and 2:2:6, respectively, showing a complex nonlinear relationship between the impacts of single and cascade reservoirs on runoff. This study provides ideas for quantitatively assessing the impacts of cascade reservoirs on runoff and provide a basis for comprehensively assessing the ecosystem and socio-economic impacts of reservoirs on future runoff changes.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.172784","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change and human activities have great impacts on runoff. With the gradual development of cascade hydropower in the watershed, the reservoirs have increasingly impacted runoff. However, the current study mainly focuses on quantifying the impacts of human activities and climate change on runoff, lacking the exploration of the impacts of cascade reservoirs, and the attribution results are relatively rough. Therefore, this study utilized data-driven models to establish a runoff attribution framework with the basic steps of "interval runoff prediction and scheduling rule extraction", which achieved the spatial scale separation of the impacts of cascade and individual reservoirs on the runoff, and the analysis of the impacts of each factor at multiple time scales. Taking the upper reaches of the Yangtze River mainstem as an example, we verified the applicability and accuracy of the framework, explored the impacts of climate change, human activities (without reservoir scheduling), and reservoir scheduling on runoff during the period 1980-2018. The research found: (1) Compared to the base period 1980-2005, the average multi-year runoff changes at Pingshan Station (during 2013-2018), Yichang Station (during 2006-2012) and Yichang Station (during 2013-2018) were - 2.61 %, -4.33 % and - 0.89 %, respectively, with decreasing, increasing, and flattening trends over time. (2) Reservoir scheduling is the main factor leading to runoff change, showing negative impacts during flood season and positive impacts during non-flood season. (3) Under the control domain of single and cascade reservoirs, the annual scale impacts of climate change, human activities, and reservoir scheduling on runoff accounted for approximately 1:1:8 and 2:2:6, respectively, showing a complex nonlinear relationship between the impacts of single and cascade reservoirs on runoff. This study provides ideas for quantitatively assessing the impacts of cascade reservoirs on runoff and provide a basis for comprehensively assessing the ecosystem and socio-economic impacts of reservoirs on future runoff changes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多尺度归因框架,用于区分梯级水库和单个水库对径流的影响。
气候变化和人类活动对径流有很大影响。随着流域内梯级水电的逐步开发,水库对径流的影响也越来越大。然而,目前的研究主要集中于量化人类活动和气候变化对径流的影响,缺乏对梯级水库影响的探讨,归因结果较为粗糙。因此,本研究利用数据驱动模型,建立了以 "区间径流预测与调度规则提取 "为基本步骤的径流归因框架,实现了梯级水库和单个水库对径流影响的空间尺度分离,以及各因子在多时间尺度上的影响分析。以长江上游干流为例,验证了该框架的适用性和准确性,探讨了1980-2018年间气候变化、人类活动(无水库调度)、水库调度对径流的影响。研究发现:(1)与基期1980-2005年相比,坪山站(2013-2018年)、宜昌站(2006-2012年)和宜昌站(2013-2018年)多年平均径流量变化分别为-2.61%、-4.33%和-0.89%,随时间变化呈递减、递增和趋平趋势。(2)水库调度是导致径流变化的主要因素,在汛期表现为负面影响,在非汛期表现为正面影响。(3)在单库和梯级水库控制域下,气候变化、人类活动和水库调度对径流的年尺度影响分别约为 1:1:8 和 2:2:6,表明单库和梯级水库对径流的影响存在复杂的非线性关系。该研究为定量评估梯级水库对径流的影响提供了思路,为全面评估水库对未来径流变化的生态系统和社会经济影响提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
A spatio-temporal analysis of environmental fate and transport processes of pesticides and their transformation products in agricultural landscapes dominated by subsurface drainage with SWAT. Occurrence and dissipation mechanisms of organic contaminants during sewage sludge anaerobic digestion: A critical review. Neurodegenerative pathways and metabolic changes in the hippocampus and cortex of mice exposed to urban particulate matter: Insights from an integrated interactome analysis. Effects of ambient air pollution from shipping on mortality: A systematic review. Exploring avian exposure to parent polycyclic aromatic hydrocarbons (PAHs): Using the common eider Somateria mollissima in a global context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1