Stability Indicating Method Development and Validation of Glycyrrhizin Using RP-HPLC-DAD: Application to Glycyrrhiza glabra Extract.

IF 1.5 4区 化学 Q4 BIOCHEMICAL RESEARCH METHODS Journal of chromatographic science Pub Date : 2024-05-05 DOI:10.1093/chromsci/bmae022
Waibiangki Lyngdoh, Sandeep Jat, Pramod Kumar
{"title":"Stability Indicating Method Development and Validation of Glycyrrhizin Using RP-HPLC-DAD: Application to Glycyrrhiza glabra Extract.","authors":"Waibiangki Lyngdoh, Sandeep Jat, Pramod Kumar","doi":"10.1093/chromsci/bmae022","DOIUrl":null,"url":null,"abstract":"<p><p>Glycyrrhiza glabra is commonly known as licorice. Licorice is the major source of glycyrrhizin. There is no reported stability indicating method for glycyrrhizin in the literature so far. Therefore, it was proposed to develop a stability indicating method and validate the method for glycyrrhizin and its application in G. glabra root extract. Method validation parameters were performed as per the International Council for Harmonization guidelines. The chromatographic separation was achieved on a Zorbax Extended C-18 (250 × 4.6 mm, 5 μm) column. The separation achieved using the mobile phase consisted of 0.1% formic acid in water and acetonitrile in gradient elution. The flow rate was kept at 1 mL/min, and ultraviolet-visible spectroscopy detection was at 250 nm. The average retention time of glycyrrhizin was found to be 7.30 min. Stress degradation studies were performed and confirmed that only acidic degradation has shown a degradation profile of glycyrrhizin up to 40%. The percentage of glycyrrhizin was found to be 0.40% in the G. glabra extract. This may be further explored for commercial applications.</p>","PeriodicalId":15430,"journal":{"name":"Journal of chromatographic science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chromatographic science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/chromsci/bmae022","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Glycyrrhiza glabra is commonly known as licorice. Licorice is the major source of glycyrrhizin. There is no reported stability indicating method for glycyrrhizin in the literature so far. Therefore, it was proposed to develop a stability indicating method and validate the method for glycyrrhizin and its application in G. glabra root extract. Method validation parameters were performed as per the International Council for Harmonization guidelines. The chromatographic separation was achieved on a Zorbax Extended C-18 (250 × 4.6 mm, 5 μm) column. The separation achieved using the mobile phase consisted of 0.1% formic acid in water and acetonitrile in gradient elution. The flow rate was kept at 1 mL/min, and ultraviolet-visible spectroscopy detection was at 250 nm. The average retention time of glycyrrhizin was found to be 7.30 min. Stress degradation studies were performed and confirmed that only acidic degradation has shown a degradation profile of glycyrrhizin up to 40%. The percentage of glycyrrhizin was found to be 0.40% in the G. glabra extract. This may be further explored for commercial applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 RP-HPLC-DAD 开发和验证甘草苷的稳定性指示方法:在甘草提取物中的应用
甘草俗称甘草。甘草是甘草苷的主要来源。迄今为止,文献中还没有关于甘草苷稳定性指示方法的报道。因此,建议开发一种稳定性指示方法,并验证该方法在甘草根提取物中的应用。方法验证参数按照国际协调理事会的指导原则执行。色谱分离采用 Zorbax Extended C-18 (250 × 4.6 mm, 5 μm)色谱柱。以 0.1% 甲酸水溶液和乙腈为流动相进行梯度洗脱。流速为 1 mL/min,紫外可见光谱检测波长为 250 nm。甘草苷的平均保留时间为 7.30 分钟。进行了应力降解研究,结果表明只有酸性降解才会使甘草苷的降解率达到 40%。研究发现,甘草提取物中甘草苷的比例为 0.40%。可进一步探索其商业应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
7.70%
发文量
94
审稿时长
5.6 months
期刊介绍: The Journal of Chromatographic Science is devoted to the dissemination of information concerning all methods of chromatographic analysis. The standard manuscript is a description of recent original research that covers any or all phases of a specific separation problem, principle, or method. Manuscripts which have a high degree of novelty and fundamental significance to the field of separation science are particularly encouraged. It is expected the authors will clearly state in the Introduction how their method compares in some markedly new and improved way to previous published related methods. Analytical performance characteristics of new methods including sensitivity, tested limits of detection or quantification, accuracy, precision, and specificity should be provided. Manuscripts which describe a straightforward extension of a known analytical method or an application to a previously analyzed and/or uncomplicated sample matrix will not normally be reviewed favorably. Manuscripts in which mass spectrometry is the dominant analytical method and chromatography is of marked secondary importance may be declined.
期刊最新文献
A GC–MS Method for Determination of β-Propiolactone Residues in Inactivated Covid-19 Vaccines Ayurveda Detoxification Process Reduces Plumbagin from the Roots of Plumbago zeylanica L. - A RP-UFLC Analysis. Green and Sustainable Analytical Chemistry-Driven Chromatographic Method Development for Stability Study of Apixaban Using Box-Behnken Design and Principal Component Analysis. A Sensitive Liquid Chromatography-Mass Spectrometric Method for Determination of Bisoprolol in Rat Serum after Pre-Column Derivatization. Design of Experiment-Based Green UPLC-DAD Method for the Simultaneous Determination of Indacaterol, Glycopyrronium and Mometasone in their Combined Dosage Form and Spiked Human Plasma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1